MIGRATION_PLAN.md•17 kB
# Migration Plan - Optimization Architecture
**Version:** 2.0.0
**Date:** 2025-01-13
**Total Duration:** 10 weeks
**Team Size:** 1-2 developers
---
## Overview
This document provides a detailed, week-by-week migration plan to transform the JobNimbus MCP Remote server from a "dump all data" model to an intelligent, token-efficient system.
**Key Principles:**
1. Zero downtime - all changes are backward compatible
2. Incremental rollout - test each phase before proceeding
3. Metrics-driven - measure improvement at each step
4. Rollback-ready - ability to revert if issues arise
---
## Pre-Migration Checklist
Before starting the migration, ensure:
- [ ] Current system is stable and production-ready
- [ ] Redis cache (FASE 1) is working correctly
- [ ] Baseline metrics are collected (response sizes, latencies)
- [ ] Development/staging environment is set up
- [ ] Monitoring dashboard is operational
- [ ] Team has reviewed architecture documents
**Baseline Metrics to Collect:**
- Average response size per endpoint
- Average token usage per request
- Current cache hit rate
- P95/P99 latencies
- Error rate
---
## Phase 1: Foundation (Week 1-2)
**Goal:** Set up core infrastructure without breaking existing functionality
### Week 1: Query Parser & Validator
**Tasks:**
1. Implement QueryParser with Zod validation
2. Implement QueryValidator for semantic checks
3. Add backward compatibility middleware
4. Write comprehensive unit tests
5. Deploy to staging
**Deliverables:**
- `src/optimization/QueryParser.ts`
- `src/optimization/QueryValidator.ts`
- `src/middleware/BackwardCompatibilityMiddleware.ts`
- `tests/unit/QueryParser.test.ts`
- `tests/unit/QueryValidator.test.ts`
**Testing:**
```bash
# Unit tests
npm run test:unit -- QueryParser
npm run test:unit -- QueryValidator
# Integration test
curl -X GET "http://localhost:3000/jobs?fields=jnid,number,status"
curl -X POST "http://localhost:3000/jobs/search" \
-H "Content-Type: application/json" \
-d '{"filter": {"eq": {"status": "Jobs In Progress"}}}'
```
**Success Criteria:**
- [ ] All existing tests pass
- [ ] New query parameters work correctly
- [ ] Legacy parameters still work
- [ ] Validation errors are clear and helpful
**Rollback Plan:**
Remove new middleware, revert to previous version
---
### Week 2: Field Selector & Basic Optimization
**Tasks:**
1. Implement FieldSelector engine
2. Implement FilterEvaluator
3. Create optimization middleware pipeline
4. Integrate with 5 pilot endpoints
5. Collect metrics
**Deliverables:**
- `src/optimization/FieldSelector.ts`
- `src/optimization/FilterEvaluator.ts`
- `src/optimization/OptimizationPipeline.ts`
- Enhanced versions of 5 pilot tools
**Pilot Endpoints:**
1. `get_jobs`
2. `get_contacts`
3. `get_estimates`
4. `get_attachments`
5. `get_tasks`
**Testing:**
```bash
# Test field selection
curl "http://localhost:3000/jobs?fields=jnid,number,status,total"
# Test filtering
curl -X POST "http://localhost:3000/jobs/search" \
-d '{"filter": {"and": [{"eq": {"status": "Jobs In Progress"}}, {"gte": {"total": 5000}}]}}'
# Test exclude
curl "http://localhost:3000/jobs?fields=*&exclude=description,notes"
```
**Success Criteria:**
- [ ] Field selection reduces response size by 70%+
- [ ] Filters work correctly
- [ ] No performance regression
- [ ] All existing functionality preserved
**Expected Results:**
- Response size reduction: 50-70%
- Token usage reduction: 50-70%
- Latency increase: < 10ms
---
## Phase 2: Optimization Layer (Week 3-4)
**Goal:** Deploy data transformation and smart caching
### Week 3: Data Transformer & Compression
**Tasks:**
1. Implement DataTransformer with verbosity levels
2. Implement CompressionMiddleware
3. Add response size monitoring
4. Deploy to all endpoints
5. Monitor and tune
**Deliverables:**
- `src/optimization/DataTransformer.ts`
- `src/optimization/CompressionMiddleware.ts`
- `src/middleware/ResponseSizeMiddleware.ts`
- Updated all 88 tools
**Testing:**
```bash
# Test verbosity levels
curl "http://localhost:3000/jobs?verbosity=summary"
curl "http://localhost:3000/jobs?verbosity=compact"
curl "http://localhost:3000/jobs?verbosity=detailed"
# Test compression
curl "http://localhost:3000/jobs?pageSize=50" \
-H "Accept-Encoding: gzip" \
--compressed
# Check response headers
curl -I "http://localhost:3000/jobs?pageSize=50" \
-H "Accept-Encoding: gzip"
```
**Success Criteria:**
- [ ] Verbosity levels work correctly
- [ ] Compression reduces bandwidth by 60%+
- [ ] Response size warnings trigger at 15KB
- [ ] Large responses handled gracefully
**Expected Results:**
- Additional 20-30% reduction in response size
- 60-70% bandwidth savings with compression
- Total reduction: 70-85%
---
### Week 4: Smart Cache Manager & Handle Storage
**Tasks:**
1. Implement SmartCacheManager with multi-tier support
2. Implement HandleStore for large responses
3. Add cache tier promotion logic
4. Deploy cache warming scheduler
5. Monitor cache performance
**Deliverables:**
- `src/optimization/SmartCacheManager.ts`
- `src/optimization/HandleStore.ts`
- `src/optimization/CacheWarmer.ts`
- `src/config/cache-tiers.ts`
**Testing:**
```bash
# Test cache tiers
# First request (cache miss)
time curl "http://localhost:3000/jobs?fields=jnid,number"
# Second request (cache hit - Tier 1)
time curl "http://localhost:3000/jobs?fields=jnid,number"
# Test large response (should use Tier 3 handle)
curl "http://localhost:3000/jobs?verbosity=detailed&pageSize=100"
# Check cache stats
curl "http://localhost:3000/cache/stats"
```
**Success Criteria:**
- [ ] Cache hit rate > 70%
- [ ] Tier 1 hits < 50ms
- [ ] Large responses use handle storage
- [ ] Cache promotion works correctly
**Expected Results:**
- Cache hit rate: 70-80%
- Tier 1 latency: 30-50ms
- Tier 2 latency: 50-80ms
- Tier 3 latency: 80-120ms
---
## Phase 3: Intelligence Layer (Week 5-6)
**Goal:** Deploy predictive caching and advanced optimizations
### Week 5: Access Pattern Analyzer & Predictive Warming
**Tasks:**
1. Implement AccessPatternStore
2. Implement pattern analysis algorithms
3. Deploy CacheWarmer with ML-based predictions
4. Add time-based and sequential pattern detection
5. Monitor prediction accuracy
**Deliverables:**
- `src/optimization/AccessPatternStore.ts`
- `src/optimization/PatternAnalyzer.ts`
- Enhanced `CacheWarmer` with predictions
- `src/jobs/cache-warming.ts` (cron jobs)
**Testing:**
```bash
# Trigger pattern analysis
curl "http://localhost:3000/cache/analyze-patterns"
# Check warming recommendations
curl "http://localhost:3000/cache/warming/recommendations"
# Manually trigger cache warming
curl -X POST "http://localhost:3000/cache/warm"
# Check warming stats
curl "http://localhost:3000/cache/warming/stats"
```
**Success Criteria:**
- [ ] Pattern detection identifies 80%+ of sequences
- [ ] Cache warming predicts 40%+ of requests
- [ ] No false positives causing memory issues
- [ ] Warming improves hit rate by 10%+
**Expected Results:**
- Cache hit rate: 80-85%
- Prediction accuracy: 40-50%
- Warming tasks executed: 50-100/day
---
### Week 6: Dynamic TTL & Streaming
**Tasks:**
1. Implement TTLManager with dynamic adjustment
2. Add streaming support for large datasets
3. Implement aggregation engine
4. Deploy to high-traffic endpoints
5. Fine-tune TTL settings
**Deliverables:**
- `src/optimization/TTLManager.ts`
- `src/optimization/StreamingHandler.ts`
- `src/optimization/AggregationEngine.ts`
- Streaming endpoints
**Testing:**
```bash
# Test dynamic TTL
curl "http://localhost:3000/jobs?maxAge=60000" # 1 minute max age
curl "http://localhost:3000/jobs?preferCache=true" # Prefer stale cache
# Test streaming
curl "http://localhost:3000/jobs?streaming=true&format=jsonlines" | head -20
# Test aggregation
curl -X POST "http://localhost:3000/jobs/aggregate" \
-d '{"groupBy": ["status"], "metrics": {"totalRevenue": {"type": "sum", "field": "total"}}}'
# Check TTL stats
curl "http://localhost:3000/cache/ttl/stats"
```
**Success Criteria:**
- [ ] TTL adjusts based on access patterns
- [ ] Streaming works for 1000+ item datasets
- [ ] Aggregations reduce payload by 90%+
- [ ] No memory leaks with streaming
**Expected Results:**
- Cache hit rate: 85%+
- Aggregation reduction: 90-95%
- Streaming overhead: < 20ms
---
## Phase 4: Full Migration (Week 7-8)
**Goal:** Migrate all 88 tools to optimized format
### Week 7: High-Traffic Endpoints
**Tasks:**
1. Migrate jobs endpoints (10 tools)
2. Migrate contacts endpoints (8 tools)
3. Migrate estimates endpoints (7 tools)
4. Migrate analytics endpoints (15 tools)
5. Monitor and fix issues
**Tools to Migrate:**
```
Jobs: get_jobs, search_jobs, get_job, search_jobs_enhanced,
search_jobs_by_status, get_job_tasks, get_job_analytics
Contacts: get_contacts, get_contact, search_contacts,
create_contact
Estimates: get_estimates, get_estimate, create_estimate,
update_estimate, delete_estimate,
get_estimate_materials
Analytics: analyze_insurance_pipeline, analyze_retail_pipeline,
get_sales_rep_performance, get_performance_metrics,
get_revenue_report, get_margin_analysis,
analyze_revenue_leakage, get_profitability_dashboard,
get_monthly_summary, get_seasonal_trends,
get_pipeline_forecasting, get_territory_analytics,
get_door_sales_analytics, get_job_analytics,
get_activities_analytics
```
**Testing Strategy:**
1. Deploy to staging
2. Run integration tests
3. Monitor metrics for 24 hours
4. Deploy to production with canary release
5. Monitor for issues
**Success Criteria:**
- [ ] All tools support enhanced queries
- [ ] Backward compatibility maintained
- [ ] Response sizes reduced by 70%+
- [ ] No increase in error rate
---
### Week 8: Remaining Endpoints & Documentation
**Tasks:**
1. Migrate attachments endpoints (5 tools)
2. Migrate financial endpoints (10 tools)
3. Migrate materials endpoints (8 tools)
4. Migrate remaining tools (25 tools)
5. Update documentation
**Remaining Tools:**
```
Attachments: get_attachments, get_file_by_id,
get_job_attachments_distribution
Financials: get_invoices, get_consolidated_financials,
get_budgets
Materials: get_estimate_materials, get_materials_tracking,
calculate_roofing_materials, calculate_siding_materials,
estimate_materials_from_job, calculate_waste_factors,
optimize_material_orders, get_material_specifications,
compare_material_alternatives
Others: get_tasks, get_task, get_tasks_by_owner, update_task,
get_users, fetch_by_handle, get_activities, get_activity,
create_activity, get_calendar_activities,
get_timeline_data, validate_api_key,
get_products, get_material_orders, get_work_orders,
etc.
```
**Documentation Updates:**
- Update API documentation with new query parameters
- Add migration guide for users
- Create optimization best practices guide
- Update tool descriptions
**Success Criteria:**
- [ ] All 88 tools migrated
- [ ] Documentation updated
- [ ] Migration guide published
- [ ] No critical bugs
---
## Phase 5: Cleanup & Optimization (Week 9-10)
**Goal:** Remove legacy code and fine-tune performance
### Week 9: Deprecation & Cleanup
**Tasks:**
1. Add deprecation warnings for old parameters
2. Create deprecation timeline
3. Remove unused code
4. Optimize hot paths
5. Run performance profiling
**Deprecation Schedule:**
```
2.0.0 (Current): Add deprecation warnings
2.1.0 (+1 month): Warnings become errors in new endpoints
3.0.0 (+3 months): Remove support entirely
```
**Testing:**
```bash
# Check deprecation warnings
curl -I "http://localhost:3000/jobs?from=0&size=20"
# Should see: X-API-Warn: Parameter "from" is deprecated...
# Verify new endpoints don't accept old params
curl "http://localhost:3000/jobs?from=0" | jq .error
# Test migration path
curl "http://localhost:3000/jobs?pageSize=20&cursor=abc"
```
**Success Criteria:**
- [ ] Deprecation warnings show correctly
- [ ] Migration path is clear
- [ ] No breaking changes for existing users
- [ ] Code coverage > 80%
---
### Week 10: Performance Tuning & Launch
**Tasks:**
1. Fine-tune cache TTL settings
2. Optimize cache warming strategies
3. Load testing
4. Create monitoring dashboard
5. Launch celebration
**Load Testing:**
```bash
# Use Artillery or k6 for load testing
artillery quick --count 100 --num 10 http://localhost:3000/jobs
# Or with k6
k6 run --vus 50 --duration 30s load-test.js
```
**Monitoring Dashboard:**
Set up Grafana dashboard with:
- Response size trends
- Token usage trends
- Cache hit rate
- Latency percentiles (P50, P95, P99)
- Error rate
- Top endpoints by size
- Optimization metrics
**Success Criteria:**
- [ ] System handles 10x baseline traffic
- [ ] Cache warming accuracy > 60%
- [ ] Average response size reduced by 85%+
- [ ] Token usage reduced by 85%+
- [ ] Cache hit rate > 85%
**Expected Final Metrics:**
- Response size: 5-20 KB (85-90% reduction)
- Token usage: 1,500-5,000 tokens (85-90% reduction)
- Cache hit rate: 85-90%
- P95 latency: < 200ms
- Error rate: < 0.1%
---
## Rollback Procedures
### If Issues Arise in Phase 1-2:
1. Disable optimization middleware
2. Revert to previous version
3. Investigate issue offline
4. Fix and redeploy
### If Issues Arise in Phase 3-4:
1. Disable cache warming
2. Fall back to simple caching
3. Investigate and fix
4. Gradual re-enable
### If Critical Issue in Phase 5:
1. Enable legacy parameter support
2. Remove deprecation warnings
3. Roll back breaking changes
4. Communicate with users
---
## Success Metrics
### Phase 1 Success:
- Query parsing works correctly
- Field selection reduces size by 50%+
- No breaking changes
### Phase 2 Success:
- Compression reduces bandwidth by 60%+
- Cache hit rate > 70%
- Total reduction: 70-85%
### Phase 3 Success:
- Cache hit rate > 85%
- Predictive warming accuracy > 40%
- Aggregations reduce size by 90%+
### Phase 4 Success:
- All 88 tools migrated
- Documentation complete
- No increase in error rate
### Phase 5 Success:
- System stable under 10x load
- 85-90% reduction in response size
- 85-90% reduction in token usage
- Clean, maintainable codebase
---
## Risk Mitigation
### Risk 1: Performance Regression
**Mitigation:**
- Comprehensive performance testing at each phase
- Rollback plan ready
- Canary deployments
### Risk 2: Breaking Changes
**Mitigation:**
- Backward compatibility middleware
- Gradual deprecation
- Clear migration guides
### Risk 3: Cache Memory Issues
**Mitigation:**
- Multi-tier caching with size limits
- Handle storage for large responses
- Memory monitoring and alerts
### Risk 4: Complexity
**Mitigation:**
- Clear documentation
- Code reviews
- Comprehensive testing
---
## Post-Migration Monitoring
### Week 11-12: Observation Period
- Monitor metrics daily
- Address any issues quickly
- Collect user feedback
- Fine-tune based on real usage
### Month 2-3: Optimization
- Analyze usage patterns
- Optimize cache warming
- Adjust TTL settings
- Identify new optimization opportunities
### Month 4+: Maintenance
- Regular performance reviews
- Update documentation
- Plan v3.0 enhancements
- Celebrate success
---
## Communication Plan
### Week 0 (Before Start):
- Announce optimization project
- Share architecture documents
- Collect baseline metrics
### Week 2:
- Share Phase 1 results
- Demo new query parameters
### Week 4:
- Share Phase 2 results
- Announce optimization improvements
### Week 6:
- Share Phase 3 results
- Demo predictive caching
### Week 8:
- Announce full migration complete
- Publish migration guide
### Week 10:
- Launch celebration
- Publish final metrics
- Thank team
---
## Budget & Resources
### Time Investment:
- Week 1-2: 60 hours
- Week 3-4: 60 hours
- Week 5-6: 60 hours
- Week 7-8: 70 hours
- Week 9-10: 50 hours
**Total: 300 hours (7.5 weeks full-time)**
### Infrastructure Costs:
- Redis (Render.com): Free tier
- Redis (Upstash): $10/month
- Monitoring (Grafana): Free (self-hosted)
**Total: $10/month**
### Expected ROI:
- Token cost savings: 85% ($38.45/day saved)
- Infrastructure cost: $10/month
- Net savings: $1,143/month
**ROI: 11,330% annually**
---
## Conclusion
This 10-week migration plan transforms the JobNimbus MCP Remote server into an intelligent, token-efficient system with:
- 85-90% reduction in response sizes
- 85-90% reduction in token usage
- 85-90% cache hit rate
- Sub-200ms P95 latency
- 100% backward compatibility
The plan is designed to be:
- **Safe** - zero downtime, rollback-ready
- **Incremental** - test each phase before proceeding
- **Measurable** - metrics-driven approach
- **Sustainable** - maintainable codebase
Follow this plan step-by-step, measure at each phase, and adjust as needed. The result will be a world-class optimization architecture that delivers massive cost savings and performance improvements.
Good luck with the migration!