Skip to main content
Glama
MIGRATION_PLAN.md17 kB
# Migration Plan - Optimization Architecture **Version:** 2.0.0 **Date:** 2025-01-13 **Total Duration:** 10 weeks **Team Size:** 1-2 developers --- ## Overview This document provides a detailed, week-by-week migration plan to transform the JobNimbus MCP Remote server from a "dump all data" model to an intelligent, token-efficient system. **Key Principles:** 1. Zero downtime - all changes are backward compatible 2. Incremental rollout - test each phase before proceeding 3. Metrics-driven - measure improvement at each step 4. Rollback-ready - ability to revert if issues arise --- ## Pre-Migration Checklist Before starting the migration, ensure: - [ ] Current system is stable and production-ready - [ ] Redis cache (FASE 1) is working correctly - [ ] Baseline metrics are collected (response sizes, latencies) - [ ] Development/staging environment is set up - [ ] Monitoring dashboard is operational - [ ] Team has reviewed architecture documents **Baseline Metrics to Collect:** - Average response size per endpoint - Average token usage per request - Current cache hit rate - P95/P99 latencies - Error rate --- ## Phase 1: Foundation (Week 1-2) **Goal:** Set up core infrastructure without breaking existing functionality ### Week 1: Query Parser & Validator **Tasks:** 1. Implement QueryParser with Zod validation 2. Implement QueryValidator for semantic checks 3. Add backward compatibility middleware 4. Write comprehensive unit tests 5. Deploy to staging **Deliverables:** - `src/optimization/QueryParser.ts` - `src/optimization/QueryValidator.ts` - `src/middleware/BackwardCompatibilityMiddleware.ts` - `tests/unit/QueryParser.test.ts` - `tests/unit/QueryValidator.test.ts` **Testing:** ```bash # Unit tests npm run test:unit -- QueryParser npm run test:unit -- QueryValidator # Integration test curl -X GET "http://localhost:3000/jobs?fields=jnid,number,status" curl -X POST "http://localhost:3000/jobs/search" \ -H "Content-Type: application/json" \ -d '{"filter": {"eq": {"status": "Jobs In Progress"}}}' ``` **Success Criteria:** - [ ] All existing tests pass - [ ] New query parameters work correctly - [ ] Legacy parameters still work - [ ] Validation errors are clear and helpful **Rollback Plan:** Remove new middleware, revert to previous version --- ### Week 2: Field Selector & Basic Optimization **Tasks:** 1. Implement FieldSelector engine 2. Implement FilterEvaluator 3. Create optimization middleware pipeline 4. Integrate with 5 pilot endpoints 5. Collect metrics **Deliverables:** - `src/optimization/FieldSelector.ts` - `src/optimization/FilterEvaluator.ts` - `src/optimization/OptimizationPipeline.ts` - Enhanced versions of 5 pilot tools **Pilot Endpoints:** 1. `get_jobs` 2. `get_contacts` 3. `get_estimates` 4. `get_attachments` 5. `get_tasks` **Testing:** ```bash # Test field selection curl "http://localhost:3000/jobs?fields=jnid,number,status,total" # Test filtering curl -X POST "http://localhost:3000/jobs/search" \ -d '{"filter": {"and": [{"eq": {"status": "Jobs In Progress"}}, {"gte": {"total": 5000}}]}}' # Test exclude curl "http://localhost:3000/jobs?fields=*&exclude=description,notes" ``` **Success Criteria:** - [ ] Field selection reduces response size by 70%+ - [ ] Filters work correctly - [ ] No performance regression - [ ] All existing functionality preserved **Expected Results:** - Response size reduction: 50-70% - Token usage reduction: 50-70% - Latency increase: < 10ms --- ## Phase 2: Optimization Layer (Week 3-4) **Goal:** Deploy data transformation and smart caching ### Week 3: Data Transformer & Compression **Tasks:** 1. Implement DataTransformer with verbosity levels 2. Implement CompressionMiddleware 3. Add response size monitoring 4. Deploy to all endpoints 5. Monitor and tune **Deliverables:** - `src/optimization/DataTransformer.ts` - `src/optimization/CompressionMiddleware.ts` - `src/middleware/ResponseSizeMiddleware.ts` - Updated all 88 tools **Testing:** ```bash # Test verbosity levels curl "http://localhost:3000/jobs?verbosity=summary" curl "http://localhost:3000/jobs?verbosity=compact" curl "http://localhost:3000/jobs?verbosity=detailed" # Test compression curl "http://localhost:3000/jobs?pageSize=50" \ -H "Accept-Encoding: gzip" \ --compressed # Check response headers curl -I "http://localhost:3000/jobs?pageSize=50" \ -H "Accept-Encoding: gzip" ``` **Success Criteria:** - [ ] Verbosity levels work correctly - [ ] Compression reduces bandwidth by 60%+ - [ ] Response size warnings trigger at 15KB - [ ] Large responses handled gracefully **Expected Results:** - Additional 20-30% reduction in response size - 60-70% bandwidth savings with compression - Total reduction: 70-85% --- ### Week 4: Smart Cache Manager & Handle Storage **Tasks:** 1. Implement SmartCacheManager with multi-tier support 2. Implement HandleStore for large responses 3. Add cache tier promotion logic 4. Deploy cache warming scheduler 5. Monitor cache performance **Deliverables:** - `src/optimization/SmartCacheManager.ts` - `src/optimization/HandleStore.ts` - `src/optimization/CacheWarmer.ts` - `src/config/cache-tiers.ts` **Testing:** ```bash # Test cache tiers # First request (cache miss) time curl "http://localhost:3000/jobs?fields=jnid,number" # Second request (cache hit - Tier 1) time curl "http://localhost:3000/jobs?fields=jnid,number" # Test large response (should use Tier 3 handle) curl "http://localhost:3000/jobs?verbosity=detailed&pageSize=100" # Check cache stats curl "http://localhost:3000/cache/stats" ``` **Success Criteria:** - [ ] Cache hit rate > 70% - [ ] Tier 1 hits < 50ms - [ ] Large responses use handle storage - [ ] Cache promotion works correctly **Expected Results:** - Cache hit rate: 70-80% - Tier 1 latency: 30-50ms - Tier 2 latency: 50-80ms - Tier 3 latency: 80-120ms --- ## Phase 3: Intelligence Layer (Week 5-6) **Goal:** Deploy predictive caching and advanced optimizations ### Week 5: Access Pattern Analyzer & Predictive Warming **Tasks:** 1. Implement AccessPatternStore 2. Implement pattern analysis algorithms 3. Deploy CacheWarmer with ML-based predictions 4. Add time-based and sequential pattern detection 5. Monitor prediction accuracy **Deliverables:** - `src/optimization/AccessPatternStore.ts` - `src/optimization/PatternAnalyzer.ts` - Enhanced `CacheWarmer` with predictions - `src/jobs/cache-warming.ts` (cron jobs) **Testing:** ```bash # Trigger pattern analysis curl "http://localhost:3000/cache/analyze-patterns" # Check warming recommendations curl "http://localhost:3000/cache/warming/recommendations" # Manually trigger cache warming curl -X POST "http://localhost:3000/cache/warm" # Check warming stats curl "http://localhost:3000/cache/warming/stats" ``` **Success Criteria:** - [ ] Pattern detection identifies 80%+ of sequences - [ ] Cache warming predicts 40%+ of requests - [ ] No false positives causing memory issues - [ ] Warming improves hit rate by 10%+ **Expected Results:** - Cache hit rate: 80-85% - Prediction accuracy: 40-50% - Warming tasks executed: 50-100/day --- ### Week 6: Dynamic TTL & Streaming **Tasks:** 1. Implement TTLManager with dynamic adjustment 2. Add streaming support for large datasets 3. Implement aggregation engine 4. Deploy to high-traffic endpoints 5. Fine-tune TTL settings **Deliverables:** - `src/optimization/TTLManager.ts` - `src/optimization/StreamingHandler.ts` - `src/optimization/AggregationEngine.ts` - Streaming endpoints **Testing:** ```bash # Test dynamic TTL curl "http://localhost:3000/jobs?maxAge=60000" # 1 minute max age curl "http://localhost:3000/jobs?preferCache=true" # Prefer stale cache # Test streaming curl "http://localhost:3000/jobs?streaming=true&format=jsonlines" | head -20 # Test aggregation curl -X POST "http://localhost:3000/jobs/aggregate" \ -d '{"groupBy": ["status"], "metrics": {"totalRevenue": {"type": "sum", "field": "total"}}}' # Check TTL stats curl "http://localhost:3000/cache/ttl/stats" ``` **Success Criteria:** - [ ] TTL adjusts based on access patterns - [ ] Streaming works for 1000+ item datasets - [ ] Aggregations reduce payload by 90%+ - [ ] No memory leaks with streaming **Expected Results:** - Cache hit rate: 85%+ - Aggregation reduction: 90-95% - Streaming overhead: < 20ms --- ## Phase 4: Full Migration (Week 7-8) **Goal:** Migrate all 88 tools to optimized format ### Week 7: High-Traffic Endpoints **Tasks:** 1. Migrate jobs endpoints (10 tools) 2. Migrate contacts endpoints (8 tools) 3. Migrate estimates endpoints (7 tools) 4. Migrate analytics endpoints (15 tools) 5. Monitor and fix issues **Tools to Migrate:** ``` Jobs: get_jobs, search_jobs, get_job, search_jobs_enhanced, search_jobs_by_status, get_job_tasks, get_job_analytics Contacts: get_contacts, get_contact, search_contacts, create_contact Estimates: get_estimates, get_estimate, create_estimate, update_estimate, delete_estimate, get_estimate_materials Analytics: analyze_insurance_pipeline, analyze_retail_pipeline, get_sales_rep_performance, get_performance_metrics, get_revenue_report, get_margin_analysis, analyze_revenue_leakage, get_profitability_dashboard, get_monthly_summary, get_seasonal_trends, get_pipeline_forecasting, get_territory_analytics, get_door_sales_analytics, get_job_analytics, get_activities_analytics ``` **Testing Strategy:** 1. Deploy to staging 2. Run integration tests 3. Monitor metrics for 24 hours 4. Deploy to production with canary release 5. Monitor for issues **Success Criteria:** - [ ] All tools support enhanced queries - [ ] Backward compatibility maintained - [ ] Response sizes reduced by 70%+ - [ ] No increase in error rate --- ### Week 8: Remaining Endpoints & Documentation **Tasks:** 1. Migrate attachments endpoints (5 tools) 2. Migrate financial endpoints (10 tools) 3. Migrate materials endpoints (8 tools) 4. Migrate remaining tools (25 tools) 5. Update documentation **Remaining Tools:** ``` Attachments: get_attachments, get_file_by_id, get_job_attachments_distribution Financials: get_invoices, get_consolidated_financials, get_budgets Materials: get_estimate_materials, get_materials_tracking, calculate_roofing_materials, calculate_siding_materials, estimate_materials_from_job, calculate_waste_factors, optimize_material_orders, get_material_specifications, compare_material_alternatives Others: get_tasks, get_task, get_tasks_by_owner, update_task, get_users, fetch_by_handle, get_activities, get_activity, create_activity, get_calendar_activities, get_timeline_data, validate_api_key, get_products, get_material_orders, get_work_orders, etc. ``` **Documentation Updates:** - Update API documentation with new query parameters - Add migration guide for users - Create optimization best practices guide - Update tool descriptions **Success Criteria:** - [ ] All 88 tools migrated - [ ] Documentation updated - [ ] Migration guide published - [ ] No critical bugs --- ## Phase 5: Cleanup & Optimization (Week 9-10) **Goal:** Remove legacy code and fine-tune performance ### Week 9: Deprecation & Cleanup **Tasks:** 1. Add deprecation warnings for old parameters 2. Create deprecation timeline 3. Remove unused code 4. Optimize hot paths 5. Run performance profiling **Deprecation Schedule:** ``` 2.0.0 (Current): Add deprecation warnings 2.1.0 (+1 month): Warnings become errors in new endpoints 3.0.0 (+3 months): Remove support entirely ``` **Testing:** ```bash # Check deprecation warnings curl -I "http://localhost:3000/jobs?from=0&size=20" # Should see: X-API-Warn: Parameter "from" is deprecated... # Verify new endpoints don't accept old params curl "http://localhost:3000/jobs?from=0" | jq .error # Test migration path curl "http://localhost:3000/jobs?pageSize=20&cursor=abc" ``` **Success Criteria:** - [ ] Deprecation warnings show correctly - [ ] Migration path is clear - [ ] No breaking changes for existing users - [ ] Code coverage > 80% --- ### Week 10: Performance Tuning & Launch **Tasks:** 1. Fine-tune cache TTL settings 2. Optimize cache warming strategies 3. Load testing 4. Create monitoring dashboard 5. Launch celebration **Load Testing:** ```bash # Use Artillery or k6 for load testing artillery quick --count 100 --num 10 http://localhost:3000/jobs # Or with k6 k6 run --vus 50 --duration 30s load-test.js ``` **Monitoring Dashboard:** Set up Grafana dashboard with: - Response size trends - Token usage trends - Cache hit rate - Latency percentiles (P50, P95, P99) - Error rate - Top endpoints by size - Optimization metrics **Success Criteria:** - [ ] System handles 10x baseline traffic - [ ] Cache warming accuracy > 60% - [ ] Average response size reduced by 85%+ - [ ] Token usage reduced by 85%+ - [ ] Cache hit rate > 85% **Expected Final Metrics:** - Response size: 5-20 KB (85-90% reduction) - Token usage: 1,500-5,000 tokens (85-90% reduction) - Cache hit rate: 85-90% - P95 latency: < 200ms - Error rate: < 0.1% --- ## Rollback Procedures ### If Issues Arise in Phase 1-2: 1. Disable optimization middleware 2. Revert to previous version 3. Investigate issue offline 4. Fix and redeploy ### If Issues Arise in Phase 3-4: 1. Disable cache warming 2. Fall back to simple caching 3. Investigate and fix 4. Gradual re-enable ### If Critical Issue in Phase 5: 1. Enable legacy parameter support 2. Remove deprecation warnings 3. Roll back breaking changes 4. Communicate with users --- ## Success Metrics ### Phase 1 Success: - Query parsing works correctly - Field selection reduces size by 50%+ - No breaking changes ### Phase 2 Success: - Compression reduces bandwidth by 60%+ - Cache hit rate > 70% - Total reduction: 70-85% ### Phase 3 Success: - Cache hit rate > 85% - Predictive warming accuracy > 40% - Aggregations reduce size by 90%+ ### Phase 4 Success: - All 88 tools migrated - Documentation complete - No increase in error rate ### Phase 5 Success: - System stable under 10x load - 85-90% reduction in response size - 85-90% reduction in token usage - Clean, maintainable codebase --- ## Risk Mitigation ### Risk 1: Performance Regression **Mitigation:** - Comprehensive performance testing at each phase - Rollback plan ready - Canary deployments ### Risk 2: Breaking Changes **Mitigation:** - Backward compatibility middleware - Gradual deprecation - Clear migration guides ### Risk 3: Cache Memory Issues **Mitigation:** - Multi-tier caching with size limits - Handle storage for large responses - Memory monitoring and alerts ### Risk 4: Complexity **Mitigation:** - Clear documentation - Code reviews - Comprehensive testing --- ## Post-Migration Monitoring ### Week 11-12: Observation Period - Monitor metrics daily - Address any issues quickly - Collect user feedback - Fine-tune based on real usage ### Month 2-3: Optimization - Analyze usage patterns - Optimize cache warming - Adjust TTL settings - Identify new optimization opportunities ### Month 4+: Maintenance - Regular performance reviews - Update documentation - Plan v3.0 enhancements - Celebrate success --- ## Communication Plan ### Week 0 (Before Start): - Announce optimization project - Share architecture documents - Collect baseline metrics ### Week 2: - Share Phase 1 results - Demo new query parameters ### Week 4: - Share Phase 2 results - Announce optimization improvements ### Week 6: - Share Phase 3 results - Demo predictive caching ### Week 8: - Announce full migration complete - Publish migration guide ### Week 10: - Launch celebration - Publish final metrics - Thank team --- ## Budget & Resources ### Time Investment: - Week 1-2: 60 hours - Week 3-4: 60 hours - Week 5-6: 60 hours - Week 7-8: 70 hours - Week 9-10: 50 hours **Total: 300 hours (7.5 weeks full-time)** ### Infrastructure Costs: - Redis (Render.com): Free tier - Redis (Upstash): $10/month - Monitoring (Grafana): Free (self-hosted) **Total: $10/month** ### Expected ROI: - Token cost savings: 85% ($38.45/day saved) - Infrastructure cost: $10/month - Net savings: $1,143/month **ROI: 11,330% annually** --- ## Conclusion This 10-week migration plan transforms the JobNimbus MCP Remote server into an intelligent, token-efficient system with: - 85-90% reduction in response sizes - 85-90% reduction in token usage - 85-90% cache hit rate - Sub-200ms P95 latency - 100% backward compatibility The plan is designed to be: - **Safe** - zero downtime, rollback-ready - **Incremental** - test each phase before proceeding - **Measurable** - metrics-driven approach - **Sustainable** - maintainable codebase Follow this plan step-by-step, measure at each phase, and adjust as needed. The result will be a world-class optimization architecture that delivers massive cost savings and performance improvements. Good luck with the migration!

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/benitocabrerar/jobnimbus-mcp-remote'

If you have feedback or need assistance with the MCP directory API, please join our Discord server