子网掩码计算器 MCP 服务器
一个基于MCP框架的子网掩码计算器服务器,提供子网信息计算和网络规划建议功能。
功能特点
- 计算子网详细信息,包括:
- 网络地址
- 子网掩码和前缀长度
- 可用IP地址范围(第一个和最后一个可用IP)
- 可用IP地址总数
- 广播地址
- 提供基于网络规模的局域网规划建议
- 支持不同类型网络(小型、中型、大型、企业级)的专门规划建议
安装与使用
前提条件
- Python 3.7+
- MCP框架
安装步骤
- 克隆仓库git clone https://github.com/awakm618/subnet_calculator_mcp.git
- cd subnet-calculator-mcp
- 安装依赖pip install -r requirements.txt
- 启动服务器python3 main.py 服务器将在默认端口启动,使用SSE传输方式,允许所有网络接口访问。
API 使用
工具调用
子网计算工具
- 名称:
calculate_subnet
- 参数:
ip_address
: 网络中的IP地址(例如: 192.168.1.100)subnet_mask
: 子网掩码(例如: 255.255.255.0)
- 返回: 包含子网详细信息的JSON对象
资源访问
网络规划建议
- 资源路径:
network_advice://{network_type}
- 参数:
network_type
: 网络类型,可选值:small, medium, large, enterprise
- 返回: 对应网络类型的规划建议字符串
示例
计算192.168.1.100/255.255.255.0的子网信息:# 示例客户端调用 result = client.call_tool("calculate_subnet", { "ip_address": "192.168.1.100", "subnet_mask": "255.255.255.0" }) print(result) 获取小型网络的规划建议:# 示例客户端资源访问 advice = client.get_resource("network_advice://small") print(advice)
许可证
This server cannot be installed
remote-capable server
The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.
Enables subnet mask calculations and network planning through MCP framework. Provides detailed subnet information including network addresses, IP ranges, and broadcast addresses, plus LAN planning advice for different network scales.
Related MCP Servers
- AsecurityAlicenseAqualityA Model Control Protocol server that provides access to nmap network scanning functionality, allowing users to run customizable scans, store results, and analyze network security using AI prompts.Last updated -39MIT License
- -securityFlicense-qualityAn MCP server that retrieves statistics from top protocols in the Mantle Network to help users make more informed investment decisions.Last updated -1
- -securityFlicense-qualityMCP server to perform various OSINT tasks by leveraging common network reconnaissance tools.Last updated -35
- AsecurityAlicenseAqualityMulti-Agent Mesh Network MCP server that spawns specialized AI agents working in parallel to solve complex coding problems, providing 3.64x faster performance through distributed intelligence.Last updated -351MIT License