Skip to main content
Glama

FastAPI MCP Server

by arrehman3

FastAPI + MCP Server Integration with Gemini CLI

This project demonstrates how to build a FastAPI application, wrap it as an MCP (Model Context Protocol) Server, and integrate it with Gemini CLI for direct tool calling.

Project Structure

├── sample_app.py # FastAPI application with user and task management ├── mcp_server.py # MCP server that wraps the FastAPI app ├── requirements.txt # Python dependencies ├── setup.sh # Setup script ├── demo.sh # Interactive demonstration script ├── test_integration.py # Integration test script ├── venv/ # Python virtual environment └── README.md # This file

Features

FastAPI Application (sample_app.py)

  • User Management: Create, read users with name, email, and age

  • Task Management: Create, read, update, delete tasks

  • Statistics: Get overview of users and tasks

  • Health Check: Basic health monitoring endpoint

MCP Server (mcp_server.py)

  • Tool Integration: Exposes all FastAPI endpoints as MCP tools

  • Error Handling: Proper HTTP error handling and logging

  • Type Safety: Full type annotations and schema validation

Available MCP Tools

  1. get_app_info - Get basic app information

  2. get_health - Check app health status

  3. get_users - List all users

  4. create_user - Create a new user

  5. get_user - Get user by ID

  6. get_tasks - List all tasks

  7. create_task - Create a new task

  8. get_task - Get task by ID

  9. update_task - Update an existing task

  10. delete_task - Delete a task

  11. get_stats - Get user and task statistics

Quick Start

Option 1: Automated Demo

./demo.sh

This interactive script will guide you through the entire setup and testing process.

Option 2: Manual Setup

1. Run Setup Script

./setup.sh

2. Start the FastAPI Application

source venv/bin/activate python sample_app.py

The FastAPI app will be available at http://localhost:8000

3. Start the MCP Server (in another terminal)

source venv/bin/activate python mcp_server.py

4. Install Gemini CLI

npm install -g @google/gemini-cli@latest

5. Add MCP Server to Gemini CLI

gemini mcp add fastapi-sample stdio python $(pwd)/mcp_server.py

6. Test the Integration

# List available tools gemini mcp list # Call a tool gemini call fastapi-sample get_app_info # Create a user gemini call fastapi-sample create_user --name "John Doe" --email "john@example.com" --age 30 # Get all users gemini call fastapi-sample get_users # Create a task gemini call fastapi-sample create_task --title "Learn MCP" --description "Study Model Context Protocol" --user_id 1 # Get statistics gemini call fastapi-sample get_stats

Manual Setup

If you prefer to set up manually:

1. Install Python Dependencies

pip3 install -r requirements.txt

2. Start Services

  • FastAPI app: python3 sample_app.py

  • MCP server: python3 mcp_server.py

3. Install and Configure Gemini CLI

npm install -g @google/gemini-cli@latest gemini mcp add fastapi-sample stdio python3 /path/to/mcp_server.py

API Endpoints

The FastAPI application provides the following REST endpoints:

  • GET / - App information

  • GET /health - Health check

  • GET /users - List users

  • POST /users - Create user

  • GET /users/{user_id} - Get user by ID

  • GET /tasks - List tasks

  • POST /tasks - Create task

  • GET /tasks/{task_id} - Get task by ID

  • PUT /tasks/{task_id} - Update task

  • DELETE /tasks/{task_id} - Delete task

  • GET /stats - Get statistics

MCP Tool Examples

Create and Manage Users

# Create a user gemini call fastapi-sample create_user --name "Alice Smith" --email "alice@example.com" --age 25 # Get user by ID gemini call fastapi-sample get_user --user_id 1 # List all users gemini call fastapi-sample get_users

Create and Manage Tasks

# Create a task gemini call fastapi-sample create_task --title "Complete project" --description "Finish the MCP integration" --user_id 1 # Update a task gemini call fastapi-sample update_task --task_id 1 --title "Complete project" --description "Finish the MCP integration" --user_id 1 --completed true # Delete a task gemini call fastapi-sample delete_task --task_id 1

Get Statistics

gemini call fastapi-sample get_stats

Troubleshooting

Common Issues

  1. Port already in use: Make sure port 8000 is available for the FastAPI app

  2. MCP server connection failed: Ensure the FastAPI app is running before starting the MCP server

  3. Gemini CLI not found: Make sure Node.js and npm are installed, then install Gemini CLI globally

Debug Mode

To run the FastAPI app in debug mode:

uvicorn sample_app:app --reload --host 0.0.0.0 --port 8000

Check MCP Server Status

gemini mcp list

Development

Adding New Endpoints

  1. Add the endpoint to sample_app.py

  2. Add the corresponding tool to mcp_server.py in the handle_list_tools() function

  3. Add the tool handler in the handle_call_tool() function

Testing

You can test the FastAPI endpoints directly using curl:

# Test app info curl http://localhost:8000/ # Create a user curl -X POST http://localhost:8000/users \ -H "Content-Type: application/json" \ -d '{"name": "Test User", "email": "test@example.com", "age": 30}' # Get users curl http://localhost:8000/users

License

This project is for educational purposes and demonstrates MCP integration patterns.

-
security - not tested
F
license - not found
-
quality - not tested

local-only server

The server can only run on the client's local machine because it depends on local resources.

Wraps a FastAPI application as an MCP server, enabling user and task management operations through Gemini CLI tool calling with full CRUD functionality.

  1. Project Structure
    1. Features
      1. FastAPI Application (sample_app.py)
      2. MCP Server (mcp_server.py)
      3. Available MCP Tools
    2. Quick Start
      1. Option 1: Automated Demo
      2. Option 2: Manual Setup
    3. Manual Setup
      1. 1. Install Python Dependencies
      2. 2. Start Services
      3. 3. Install and Configure Gemini CLI
    4. API Endpoints
      1. MCP Tool Examples
        1. Create and Manage Users
        2. Create and Manage Tasks
        3. Get Statistics
      2. Troubleshooting
        1. Common Issues
        2. Debug Mode
        3. Check MCP Server Status
      3. Development
        1. Adding New Endpoints
        2. Testing
      4. License

        MCP directory API

        We provide all the information about MCP servers via our MCP API.

        curl -X GET 'https://glama.ai/api/mcp/v1/servers/arrehman3/MCP'

        If you have feedback or need assistance with the MCP directory API, please join our Discord server