Skip to main content
Glama

AutoDev Codebase MCP Server

by anrgct
openai.ts5.29 kB
import { OpenAI } from "openai" import { ApiHandlerOptions } from "../../shared/api" import { IEmbedder, EmbeddingResponse, EmbedderInfo } from "../interfaces/embedder" import { MAX_BATCH_TOKENS, MAX_ITEM_TOKENS, MAX_BATCH_RETRIES as MAX_RETRIES, INITIAL_RETRY_DELAY_MS as INITIAL_DELAY_MS, } from "../constants" import { fetch, ProxyAgent } from "undici" /** * OpenAI implementation of the embedder interface with batching and rate limiting */ export class OpenAiEmbedder implements IEmbedder { private embeddingsClient: OpenAI private readonly defaultModelId: string /** * Creates a new OpenAI embedder * @param options API handler options */ constructor(options: ApiHandlerOptions & { openAiEmbeddingModelId?: string }) { const apiKey = options.openAiNativeApiKey ?? "not-provided" // 检查环境变量中的代理设置 const httpsProxy = process.env['HTTPS_PROXY'] || process.env['https_proxy'] const httpProxy = process.env['HTTP_PROXY'] || process.env['http_proxy'] // OpenAI API 使用 HTTPS,所以优先使用 HTTPS 代理 const proxyUrl = httpsProxy || httpProxy let dispatcher: any = undefined if (proxyUrl) { try { dispatcher = new ProxyAgent(proxyUrl) console.log('✓ OpenAI using undici ProxyAgent:', proxyUrl) } catch (error) { console.error('✗ Failed to create undici ProxyAgent for OpenAI:', error) } } else { // console.log('ℹ No proxy configured for OpenAI') } const clientConfig: any = { apiKey, dangerouslyAllowBrowser: true, } if (dispatcher) { clientConfig.fetch = (url: string, init?: any) => { return fetch(url, { ...init, dispatcher }) } console.log('📝 调试: OpenAI客户端将使用 undici ProxyAgent 代理') } else { clientConfig.fetch = fetch // console.log('📝 调试: OpenAI客户端不使用代理 (undici)') } this.embeddingsClient = new OpenAI(clientConfig) this.defaultModelId = options.openAiEmbeddingModelId || "text-embedding-3-small" } /** * Creates embeddings for the given texts with batching and rate limiting * @param texts Array of text strings to embed * @param model Optional model identifier * @returns Promise resolving to embedding response */ async createEmbeddings(texts: string[], model?: string): Promise<EmbeddingResponse> { const modelToUse = model || this.defaultModelId const allEmbeddings: number[][] = [] const usage = { promptTokens: 0, totalTokens: 0 } const remainingTexts = [...texts] while (remainingTexts.length > 0) { const currentBatch: string[] = [] let currentBatchTokens = 0 const processedIndices: number[] = [] for (let i = 0; i < remainingTexts.length; i++) { const text = remainingTexts[i] const itemTokens = Math.ceil(text.length / 4) if (itemTokens > MAX_ITEM_TOKENS) { console.warn( `Text at index ${i} exceeds maximum token limit (${itemTokens} > ${MAX_ITEM_TOKENS}). Skipping.`, ) processedIndices.push(i) continue } if (currentBatchTokens + itemTokens <= MAX_BATCH_TOKENS) { currentBatch.push(text) currentBatchTokens += itemTokens processedIndices.push(i) } else { break } } // Remove processed items from remainingTexts (in reverse order to maintain correct indices) for (let i = processedIndices.length - 1; i >= 0; i--) { remainingTexts.splice(processedIndices[i], 1) } if (currentBatch.length > 0) { try { const batchResult = await this._embedBatchWithRetries(currentBatch, modelToUse) allEmbeddings.push(...batchResult.embeddings) usage.promptTokens += batchResult.usage.promptTokens usage.totalTokens += batchResult.usage.totalTokens } catch (error) { console.error("Failed to process batch:", error) throw new Error("Failed to create embeddings: batch processing error") } } } return { embeddings: allEmbeddings, usage } } /** * Helper method to handle batch embedding with retries and exponential backoff * @param batchTexts Array of texts to embed in this batch * @param model Model identifier to use * @returns Promise resolving to embeddings and usage statistics */ private async _embedBatchWithRetries( batchTexts: string[], model: string, ): Promise<{ embeddings: number[][]; usage: { promptTokens: number; totalTokens: number } }> { for (let attempts = 0; attempts < MAX_RETRIES; attempts++) { try { const response = await this.embeddingsClient.embeddings.create({ input: batchTexts, model: model, }) return { embeddings: response.data.map((item) => item.embedding), usage: { promptTokens: response.usage?.prompt_tokens || 0, totalTokens: response.usage?.total_tokens || 0, }, } } catch (error: any) { const isRateLimitError = error?.status === 429 const hasMoreAttempts = attempts < MAX_RETRIES - 1 if (isRateLimitError && hasMoreAttempts) { const delayMs = INITIAL_DELAY_MS * Math.pow(2, attempts) await new Promise((resolve) => setTimeout(resolve, delayMs)) continue } throw error } } throw new Error(`Failed to create embeddings after ${MAX_RETRIES} attempts`) } get embedderInfo(): EmbedderInfo { return { name: "openai", } } }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/anrgct/autodev-codebase'

If you have feedback or need assistance with the MCP directory API, please join our Discord server