Skip to main content
Glama

AutoDev Codebase MCP Server

by anrgct

@autodev/codebase

A platform-agnostic code analysis library with semantic search capabilities and MCP (Model Context Protocol) server support. This library provides intelligent code indexing, vector-based semantic search, and can be integrated into various development tools and IDEs.

🚀 Features

  • Semantic Code Search: Vector-based code search using embeddings
  • MCP Server Support: HTTP-based MCP server for IDE integration
  • Terminal UI: Interactive CLI with rich terminal interface
  • Tree-sitter Parsing: Advanced code parsing and analysis
  • Vector Storage: Qdrant vector database integration
  • Flexible Embedding: Support for various embedding models via Ollama

📦 Installation

1. Install and Start Ollama

# Install Ollama (macOS) brew install ollama # Start Ollama service ollama serve # In a new terminal, pull the embedding model ollama pull dengcao/Qwen3-Embedding-0.6B:Q8_0

2. Install ripgrep

ripgrep is required for fast codebase indexing. Install it with:

# Install ripgrep (macOS) brew install ripgrep # Or on Ubuntu/Debian sudo apt-get install ripgrep # Or on Arch Linux sudo pacman -S ripgrep

3. Install and Start Qdrant

Start Qdrant using Docker:

# Start Qdrant container docker run -p 6333:6333 -p 6334:6334 qdrant/qdrant

Or download and run Qdrant directly:

# Download and run Qdrant wget https://github.com/qdrant/qdrant/releases/latest/download/qdrant-x86_64-unknown-linux-gnu.tar.gz tar -xzf qdrant-x86_64-unknown-linux-gnu.tar.gz ./qdrant

4. Verify Services Are Running

# Check Ollama curl http://localhost:11434/api/tags # Check Qdrant curl http://localhost:6333/collections

5. Install Autodev-codebase

npm install -g @autodev/codebase

Alternatively, you can install it locally:

git clone https://github.com/anrgct/autodev-codebase cd autodev-codebase npm install npm run build npm link

🛠️ Usage

Command Line Interface

The CLI provides two main modes:

1. Interactive TUI Mode (Default)
# Basic usage: index your current folder as the codebase. # Be cautious when running this command if you have a large number of files. codebase # With custom options codebase --demo # Create a local demo directory and test the indexing service, recommend for setup codebase --path=/my/project codebase --path=/my/project --log-level=info
# Start long-running MCP server cd /my/project codebase mcp-server # With custom configuration codebase mcp-server --port=3001 --host=localhost codebase mcp-server --path=/workspace --port=3002

⚙️ Configuration

Configuration Files & Priority

The library uses a layered configuration system, allowing you to customize settings at different levels. The priority order (highest to lowest) is:

  1. CLI Parameters (e.g., --model, --ollama-url, --qdrant-url, --config, etc.)
  2. Project Config File (./autodev-config.json)
  3. Global Config File (~/.autodev-cache/autodev-config.json)
  4. Built-in Defaults

Settings specified at a higher level override those at lower levels. This lets you tailor the behavior for your environment or project as needed.

Config file locations:

  • Global: ~/.autodev-cache/autodev-config.json
  • Project: ./autodev-config.json
  • CLI: Pass parameters directly when running commands
Global Configuration

Create a global configuration file at ~/.autodev-cache/autodev-config.json:

{ "isEnabled": true, "embedder": { "provider": "ollama", "model": "dengcao/Qwen3-Embedding-0.6B:Q8_0", "dimension": 1024, "baseUrl": "http://localhost:11434" }, "qdrantUrl": "http://localhost:6333", "qdrantApiKey": "your-api-key-if-needed", "searchMinScore": 0.4 }
Project Configuration

Create a project-specific configuration file at ./autodev-config.json:

{ "embedder": { "provider": "openai-compatible", "apiKey": "sk-xxxxx", "baseUrl": "http://localhost:2302/v1", "model": "openai/text-embedding-3-smallnpm", "dimension": 1536, }, "qdrantUrl": "http://localhost:6334" }
Configuration Options
OptionTypeDescriptionDefault
isEnabledbooleanEnable/disable code indexing featuretrue
embedder.providerstringEmbedding provider (ollama, openai, openai-compatible)ollama
embedder.modelstringEmbedding model namedengcao/Qwen3-Embedding-0.6B:Q8_0
embedder.dimensionnumberVector dimension size1024
embedder.baseUrlstringProvider API base URLhttp://localhost:11434
embedder.apiKeystringAPI key (for OpenAI/compatible providers)-
qdrantUrlstringQdrant vector database URLhttp://localhost:6333
qdrantApiKeystringQdrant API key (if authentication enabled)-
searchMinScorenumberMinimum similarity score for search results0.4

Note: The isConfigured field is automatically calculated based on the completeness of your configuration and should not be set manually. The system will determine if the configuration is valid based on the required fields for your chosen provider.

Configuration Priority Examples
# Use global config defaults codebase # Override model via CLI (highest priority) codebase --model="custom-model" # Use project config with CLI overrides codebase --config=./my-config.json --qdrant-url=http://remote:6333

🔧 CLI Options

Global Options

  • --path=<path> - Workspace path (default: current directory)
  • --demo - Create demo files in workspace
  • --force - ignore cache force re-index
  • --ollama-url=<url> - Ollama API URL (default: http://localhost:11434)
  • --qdrant-url=<url> - Qdrant vector DB URL (default: http://localhost:6333)
  • --model=<model> - Embedding model (default: nomic-embed-text)
  • --config=<path> - Config file path
  • --storage=<path> - Storage directory path
  • --cache=<path> - Cache directory path
  • --log-level=<level> - Log level: error|warn|info|debug (default: error)
  • --log-level=<level> - Log level: error|warn|info|debug (default: error)
  • --help, -h - Show help

MCP Server Options

  • --port=<port> - HTTP server port (default: 3001)
  • --host=<host> - HTTP server host (default: localhost)

IDE Integration (Cursor/Claude)

Configure your IDE to connect to the MCP server:

{ "mcpServers": { "codebase": { "url": "http://localhost:3001/sse" } } }

For clients that do not support SSE MCP, you can use the following configuration:

{ "mcpServers": { "codebase": { "command": "codebase", "args": [ "stdio-adapter", "--server-url=http://localhost:3001/sse" ] } } }

🌐 MCP Server Features

Web Interface

  • Home Page: http://localhost:3001 - Server status and configuration
  • Health Check: http://localhost:3001/health - JSON status endpoint
  • MCP Endpoint: http://localhost:3001/sse - SSE/HTTP MCP protocol endpoint

Available MCP Tools

  • search_codebase - Semantic search through your codebase
    • Parameters: query (string), limit (number), filters (object)
    • Returns: Formatted search results with file paths, scores, and code blocks

Scripts

# Development mode with demo files npm run dev # Build for production npm run build # Type checking npm run type-check # Run TUI demo npm run demo-tui # Start MCP server demo npm run mcp-server

Embedding Models PK

Mainstream Embedding Models Performance

ModelDimensionAvg Precision@3Avg Precision@5Good Queries (≥66.7%)Failed Queries (0%)
siliconflow/Qwen/Qwen3-Embedding-8B409676.7%66.0%5/100/10
siliconflow/Qwen/Qwen3-Embedding-4B256073.3%54.0%5/101/10
voyage/voyage-code-3102473.3%52.0%6/101/10
siliconflow/Qwen/Qwen3-Embedding-0.6B102463.3%42.0%4/101/10
morph-embedding-v2153656.7%44.0%3/101/10
openai/text-embedding-ada-002153653.3%38.0%2/101/10
voyage/voyage-3-large102453.3%42.0%3/102/10
openai/text-embedding-3-large307246.7%38.0%1/103/10
voyage/voyage-3.5102443.3%38.0%1/102/10
voyage/voyage-3.5-lite102436.7%28.0%1/102/10
openai/text-embedding-3-small153633.3%28.0%1/104/10
siliconflow/BAAI/bge-large-en-v1.5102430.0%28.0%0/103/10
siliconflow/Pro/BAAI/bge-m3102426.7%24.0%0/102/10
ollama/nomic-embed-text76816.7%18.0%0/106/10
siliconflow/netease-youdao/bce-embedding-base_v1102413.3%16.0%0/106/10

Ollama-based Embedding Models Performance

ModelDimensionPrecision@3Precision@5Good Queries (≥66.7%)Failed Queries (0%)
ollama/dengcao/Qwen3-Embedding-4B256066.7%48.0%4/101/10
ollama/dengcao/Qwen3-Embedding-0.6B102463.3%44.0%3/100/10
ollama/dengcao/Qwen3-Embedding-0.6B102463.3%44.0%3/100/10
ollama/dengcao/Qwen3-Embedding-4B256060.0%48.0%3/101/10
lmstudio/taylor-jones/bge-code-v1-Q8_0-GGUF153660.0%54.0%4/101/10
ollama/dengcao/Qwen3-Embedding-8B409656.7%42.0%2/102/10
ollama/hf.co/nomic-ai/nomic-embed-code-GGUF358453.3%44.0%2/100/10
ollama/bge-m3102426.7%24.0%0/102/10
ollama/hf.co/nomic-ai/nomic-embed-text-v2-moe-GGUF76826.7%20.0%0/102/10
ollama/granite-embedding:278m-fp1676823.3%18.0%0/104/10
ollama/unclemusclez/jina-embeddings-v2-base-code76823.3%16.0%0/105/10
lmstudio/awhiteside/CodeRankEmbed-Q8_0-GGUF76823.3%16.0%0/105/10
lmstudio/wsxiaoys/jina-embeddings-v2-base-code-Q8_0-GGUF76823.3%16.0%0/105/10
ollama/dengcao/Dmeta-embedding-zh76820.0%20.0%0/106/10
ollama/znbang/bge.5-q8_038416.7%16.0%0/106/10
lmstudio/nomic-ai/nomic-embed-text-v1.5-GGUF@Q4_K_M76816.7%14.0%0/106/10
ollama/nomic-embed-text76816.7%18.0%0/106/10
ollama/snowflake-arctic-embed2:568m102416.7%18.0%0/105/10
-
security - not tested
F
license - not found
-
quality - not tested

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

HTTP-based server that provides semantic code search capabilities to IDEs through the Model Context Protocol, allowing efficient codebase exploration without repeated indexing.

  1. 🚀 Features
    1. 📦 Installation
      1. 1. Install and Start Ollama
      2. 2. Install ripgrep
      3. 3. Install and Start Qdrant
      4. 4. Verify Services Are Running
      5. 5. Install Autodev-codebase
    2. 🛠️ Usage
      1. Command Line Interface
    3. ⚙️ Configuration
      1. Configuration Files & Priority
    4. 🔧 CLI Options
      1. Global Options
      2. MCP Server Options
      3. IDE Integration (Cursor/Claude)
    5. 🌐 MCP Server Features
      1. Web Interface
      2. Available MCP Tools
      3. Scripts
    6. Embedding Models PK

      Related MCP Servers

      • -
        security
        F
        license
        -
        quality
        A smart code retrieval tool based on Model Context Protocol that provides efficient and accurate code repository search capabilities for large language models.
        Last updated -
        Python
      • A
        security
        A
        license
        A
        quality
        A Model Context Protocol (MCP) server that helps large language models index, search, and analyze code repositories with minimal setup
        Last updated -
        11
        93
        Python
        MIT License
        • Apple
        • Linux
      • -
        security
        A
        license
        -
        quality
        A Model Context Protocol server that enables semantic search capabilities by providing tools to manage Qdrant vector database collections, process and embed documents using various embedding services, and perform semantic searches across vector embeddings.
        Last updated -
        89
        TypeScript
        MIT License
      • A
        security
        A
        license
        A
        quality
        A flexible Model Context Protocol server that makes documentation or codebases searchable by AI assistants, allowing users to chat with code or docs by simply pointing to a git repository or folder.
        Last updated -
        1
        22
        36
        JavaScript
        MIT License

      View all related MCP servers

      MCP directory API

      We provide all the information about MCP servers via our MCP API.

      curl -X GET 'https://glama.ai/api/mcp/v1/servers/anrgct/autodev-codebase'

      If you have feedback or need assistance with the MCP directory API, please join our Discord server