import os
from dotenv import load_dotenv
from google.ai.generativelanguage_v1beta.types import Tool as GenAITool
from google.genai import Client, types
from langchain_core.messages import AIMessage
from langchain_core.runnables import RunnableConfig
from langchain_google_genai import ChatGoogleGenerativeAI
from langgraph.graph import END, START, StateGraph
from langgraph.types import Send
from .configuration import Configuration
from .prompts import (
answer_instructions,
get_current_date,
query_writer_instructions,
reflection_instructions,
web_searcher_instructions,
)
from .state import (
OverallState,
QueryGenerationState,
ReflectionState,
WebSearchState,
)
from .tools_and_schemas import Reflection, SearchQueryList
from .utils import (
get_citations,
get_research_topic,
insert_citation_markers,
resolve_urls,
)
load_dotenv()
if os.getenv("GEMINI_API_KEY") is None:
raise ValueError("GEMINI_API_KEY is not set")
# Used for Google Search API
genai_client = Client(api_key=os.getenv("GEMINI_API_KEY"))
# Nodes
def generate_query(state: OverallState, config: RunnableConfig) -> QueryGenerationState:
"""LangGraph node that generates search queries based on the User's question.
Uses Gemini 2.5 Flash to create an optimized search queries for web research based on
the User's question.
Args:
state: Current graph state containing the User's question
config: Configuration for the runnable, including LLM provider settings
Returns:
Dictionary with state update, including search_query key containing the generated queries
"""
configurable = Configuration.from_runnable_config(config)
# check for custom initial search query count
if state.get("initial_search_query_count") is None:
state["initial_search_query_count"] = configurable.number_of_initial_queries
# init Gemini 2.5 Flash
llm = ChatGoogleGenerativeAI(
model=configurable.query_generator_model,
temperature=1.0,
max_retries=2,
include_thoughts=False,
thinking_budget=0,
api_key=os.getenv("GEMINI_API_KEY"),
)
structured_llm = llm.with_structured_output(SearchQueryList)
# Format the prompt
current_date = get_current_date()
formatted_prompt = query_writer_instructions.format(
current_date=current_date,
research_topic=get_research_topic(state["messages"]),
number_queries=state["initial_search_query_count"],
)
# Generate the search queries
result = structured_llm.invoke(formatted_prompt)
return {"search_query": result.query}
def continue_to_web_research(state: QueryGenerationState):
"""LangGraph node that sends the search queries to the web research node.
This is used to spawn n number of web research nodes, one for each search query.
"""
return [
Send("web_research", {"search_query": search_query, "id": int(idx)})
for idx, search_query in enumerate(state["search_query"])
]
def web_research(state: WebSearchState, config: RunnableConfig) -> OverallState:
"""LangGraph node that performs web research using the native Google Search API tool.
Executes a web search using the native Google Search API tool in combination with Gemini 2.0 Flash.
Args:
state: Current graph state containing the search query and research loop count
config: Configuration for the runnable, including search API settings
Returns:
Dictionary with state update, including sources_gathered, research_loop_count, and web_research_results
"""
# Configure
configurable = Configuration.from_runnable_config(config)
formatted_prompt = web_searcher_instructions.format(
current_date=get_current_date(),
research_topic=state["search_query"],
)
llm = ChatGoogleGenerativeAI(
model=configurable.web_search_model,
temperature=0,
max_retries=2,
include_thoughts=False,
thinking_budget=0,
api_key=os.getenv("GEMINI_API_KEY"),
)
response = llm.invoke(
formatted_prompt,
tools=[GenAITool(google_search={})],
)
# resolve the urls to short urls for saving tokens and time
resolved_urls = resolve_urls(
response.response_metadata["grounding_metadata"]["grounding_chunks"],
state["id"],
)
# Gets the citations and adds them to the generated text
citations = get_citations(response, resolved_urls)
modified_text = insert_citation_markers(response.content, citations)
sources_gathered = [item for citation in citations for item in citation["segments"]]
return {
"sources_gathered": sources_gathered,
"search_query": [state["search_query"]],
"web_research_result": [modified_text],
}
def reflection(state: OverallState, config: RunnableConfig) -> ReflectionState:
"""LangGraph node that identifies knowledge gaps and generates potential follow-up queries.
Analyzes the current summary to identify areas for further research and generates
potential follow-up queries. Uses structured output to extract
the follow-up query in JSON format.
Args:
state: Current graph state containing the running summary and research topic
config: Configuration for the runnable, including LLM provider settings
Returns:
Dictionary with state update, including search_query key containing the generated follow-up query
"""
configurable = Configuration.from_runnable_config(config)
# Increment the research loop count and get the reasoning model
state["research_loop_count"] = state.get("research_loop_count", 0) + 1
reasoning_model = state.get("reasoning_model") or configurable.reflection_model
# Format the prompt
current_date = get_current_date()
formatted_prompt = reflection_instructions.format(
current_date=current_date,
research_topic=get_research_topic(state["messages"]),
summaries="\n\n---\n\n".join(state["web_research_result"]),
)
# init Reasoning Model
llm = ChatGoogleGenerativeAI(
model=reasoning_model,
temperature=1.0,
max_retries=2,
api_key=os.getenv("GEMINI_API_KEY"),
)
result = llm.with_structured_output(Reflection).invoke(formatted_prompt)
return {
"is_sufficient": result.is_sufficient,
"knowledge_gap": result.knowledge_gap,
"follow_up_queries": result.follow_up_queries,
"research_loop_count": state["research_loop_count"],
"number_of_ran_queries": len(state["search_query"]),
}
def evaluate_research(
state: ReflectionState,
config: RunnableConfig,
) -> OverallState:
"""LangGraph routing function that determines the next step in the research flow.
Controls the research loop by deciding whether to continue gathering information
or to finalize the summary based on the configured maximum number of research loops.
Args:
state: Current graph state containing the research loop count
config: Configuration for the runnable, including max_research_loops setting
Returns:
String literal indicating the next node to visit ("web_research" or "finalize_summary")
"""
configurable = Configuration.from_runnable_config(config)
max_research_loops = (
state.get("max_research_loops")
if state.get("max_research_loops") is not None
else configurable.max_research_loops
)
if state["is_sufficient"] or state["research_loop_count"] >= max_research_loops:
return "finalize_answer"
else:
return [
Send(
"web_research",
{
"search_query": follow_up_query,
"id": state["number_of_ran_queries"] + int(idx),
},
)
for idx, follow_up_query in enumerate(state["follow_up_queries"])
]
def finalize_answer(state: OverallState, config: RunnableConfig):
"""LangGraph node that finalizes the research summary.
Prepares the final output by deduplicating and formatting sources, then
combining them with the running summary to create a well-structured
research report with proper citations.
Args:
state: Current graph state containing the running summary and sources gathered
Returns:
Dictionary with state update, including running_summary key containing the formatted final summary with sources
"""
configurable = Configuration.from_runnable_config(config)
reasoning_model = state.get("reasoning_model") or configurable.answer_model
# Format the prompt
current_date = get_current_date()
formatted_prompt = answer_instructions.format(
current_date=current_date,
research_topic=get_research_topic(state["messages"]),
summaries="\n---\n\n".join(state["web_research_result"]),
)
# init Reasoning Model, default to Gemini 2.5 Flash
llm = ChatGoogleGenerativeAI(
model=reasoning_model,
temperature=0,
max_retries=2,
api_key=os.getenv("GEMINI_API_KEY"),
)
result = llm.invoke(formatted_prompt)
# Replace the short urls with the original urls and add all used urls to the sources_gathered
unique_sources = []
for source in state["sources_gathered"]:
if source["short_url"] in result.content:
result.content = result.content.replace(
source["short_url"], source["value"]
)
unique_sources.append(source)
return {
"messages": [AIMessage(content=result.content)],
"sources_gathered": unique_sources,
}
# Create our Agent Graph
builder = StateGraph(OverallState, config_schema=Configuration)
# Define the nodes we will cycle between
builder.add_node("generate_query", generate_query)
builder.add_node("web_research", web_research)
builder.add_node("reflection", reflection)
builder.add_node("finalize_answer", finalize_answer)
# Set the entrypoint as `generate_query`
# This means that this node is the first one called
builder.add_edge(START, "generate_query")
# Add conditional edge to continue with search queries in a parallel branch
builder.add_conditional_edges(
"generate_query", continue_to_web_research, ["web_research"]
)
# Reflect on the web research
builder.add_edge("web_research", "reflection")
# Evaluate the research
builder.add_conditional_edges(
"reflection", evaluate_research, ["web_research", "finalize_answer"]
)
# Finalize the answer
builder.add_edge("finalize_answer", END)
graph = builder.compile(name="pro-search-agent")