import os
from pydantic import BaseModel, Field
from typing import Any, Optional
from langchain_core.runnables import RunnableConfig
class Configuration(BaseModel):
"""The configuration for the agent."""
query_generator_model: str = Field(
default="gemini-2.5-flash",
metadata={
"description": "The name of the language model to use for the agent's query generation."
},
)
web_search_model: str = Field(
default="gemini-2.5-flash-lite-preview-06-17",
metadata={
"description": "The name of the language model to use for the agent's web search."
},
)
reflection_model: str = Field(
default="gemini-2.5-flash",
metadata={
"description": "The name of the language model to use for the agent's reflection."
},
)
answer_model: str = Field(
default="gemini-2.5-pro",
metadata={
"description": "The name of the language model to use for the agent's answer."
},
)
number_of_initial_queries: int = Field(
default=3,
metadata={"description": "The number of initial search queries to generate."},
)
max_research_loops: int = Field(
default=2,
metadata={"description": "The maximum number of research loops to perform."},
)
@classmethod
def from_runnable_config(
cls, config: Optional[RunnableConfig] = None
) -> "Configuration":
"""Create a Configuration instance from a RunnableConfig."""
configurable = (
config["configurable"] if config and "configurable" in config else {}
)
# Get raw values from environment or config
raw_values: dict[str, Any] = {
name: os.environ.get(name.upper(), configurable.get(name))
for name in cls.model_fields.keys()
}
# Filter out None values
values = {k: v for k, v in raw_values.items() if v is not None}
return cls(**values)