# MCP Standards v2: Simple Personal Memory
**Philosophy**: Make Claude remember MY preferences automatically. Zero config, zero manual steps.
## What We're Building
A simple MCP server that:
1. ✅ Auto-detects corrections ("use uv not pip")
2. ✅ Stores in AgentDB (semantic vector memory)
3. ✅ Retrieves before responding (automatic context)
4. ✅ Parses config files → minimal CLAUDE.md
5. ✅ ONE skill to enable it all
## Architecture (Simple)
```
┌─────────────────────────────────────────┐
│ Claude Desktop/Code │
│ │
│ ┌───────────────────────────────────┐ │
│ │ MCP: personal-memory │ │
│ │ │ │
│ │ ┌─────────────────────────────┐ │ │
│ │ │ AgentDB Client │ │ │
│ │ │ (npx agentdb) │ │ │
│ │ │ - Vector storage │ │ │
│ │ │ - Semantic search │ │ │
│ │ │ - <10ms startup │ │ │
│ │ └─────────────────────────────┘ │ │
│ │ │ │
│ │ ┌─────────────────────────────┐ │ │
│ │ │ Auto Memory Hook │ │ │
│ │ │ - Detects corrections │ │ │
│ │ │ - Auto-stores patterns │ │ │
│ │ │ - Zero manual calls │ │ │
│ │ └─────────────────────────────┘ │ │
│ │ │ │
│ │ ┌─────────────────────────────┐ │ │
│ │ │ Config Parser (existing) │ │ │
│ │ │ - Reads .editorconfig │ │ │
│ │ │ - Minimal CLAUDE.md │ │ │
│ │ └─────────────────────────────┘ │ │
│ └───────────────────────────────────┘ │
└─────────────────────────────────────────┘
```
## Implementation
### Phase 1: AgentDB Integration (Days 1-3)
- Install AgentDB via npm
- Create simple Python client wrapper
- Test store/retrieve operations
- Performance benchmark (<10ms startup, <1ms search)
### Phase 2: Auto-Detection (Days 4-6)
- Hook into MCP tool execution
- Detect correction patterns
- Auto-store in AgentDB (no manual calls)
- Test detection accuracy
### Phase 3: Skill Creation (Day 7)
- Create `remember-preferences.md` skill
- Auto-query AgentDB before responding
- Test memory retrieval in conversations
### Phase 4: Polish (Days 8-10)
- Simplify codebase (remove complex layers)
- Optimize for minimal CLAUDE.md output
- End-to-end testing
- Documentation
## What We're NOT Building
❌ Custom vector database (use AgentDB)
❌ Complex confidence scoring (trust AgentDB)
❌ Manual promotion system (auto-detect everything)
❌ Event-driven architecture (overkill)
❌ Hybrid memory tiers (AgentDB handles it)
## Success Criteria
1. **Zero Manual Steps**: User corrects Claude → automatically remembered
2. **Fast**: <1ms to retrieve preferences
3. **Accurate**: Semantic matching (>80% recall)
4. **Minimal CLAUDE.md**: <1000 tokens, not 23K
5. **Works Cross-Project**: Personal knowledge graph
## Files to Create (New)
```
/src/mcp_standards/agentdb_client.py # AgentDB wrapper (100 LOC)
/src/mcp_standards/hooks/auto_memory.py # Correction detector (150 LOC)
/.claude/skills/remember-preferences.md # The skill (50 LOC)
/docs/SIMPLE_V2_PLAN.md # This file
```
## Files to Keep (Simplified)
```
/src/mcp_standards/standards.py # Config parser ✅
/src/mcp_standards/server.py # MCP server ✅
/src/mcp_standards/export.py # Markdown export ✅
```
## Files to Remove (Complexity)
```
/src/intelligence/context/ # Over-engineered
/src/intelligence/reasoning/ # Use AgentDB RL
/src/mcp_standards/intelligence/temporal_graph.py
/docs/architecture/v2-*.md # Old complex plans
```
## Timeline
- **Week 1**: Core system working (auto-detect + store)
- **Week 2**: Polish + test + document
- **Week 3**: Use it myself, iterate
## Inspiration
- **Gunnar's approach**: Simple side projects that solve personal problems
- **Context engineering**: Minimal CLAUDE.md, dynamic loading
- **AgentDB**: 150x faster semantic search, built-in learning
## Next Steps
1. ✅ Create this plan
2. Install AgentDB: `npm install agentdb`
3. Build AgentDB client wrapper
4. Create correction detection hook
5. Build remember-preferences skill
6. Test end-to-end