# Archive Notice - MCP Standards
**Archive Date**: November 30, 2024
**Project Status**: Archived - Reference Only
**Final Version**: v0.2.0-alpha.1
---
## π Archive Summary
This repository has been archived and is preserved for reference purposes. The project successfully demonstrated automatic preference learning for Claude using AgentDB vector memory but is no longer actively maintained.
---
## β
What Was Accomplished
### Core Features Implemented
- β
**Automatic Preference Detection**: Auto-detected "use X not Y" patterns
- β
**Vector Memory Integration**: AgentDB for <1ms semantic search (150x faster than SQLite)
- β
**Cross-Session Persistence**: Preferences remembered across all Claude sessions
- β
**Zero-Config Design**: Simple 5-minute setup process
- β
**100% Local Privacy**: All data stored locally in `~/.mcp-standards/`
- β
**Simple MCP Server**: Clean implementation with 4 core tools
### Technical Achievements
- **Performance**: Sub-millisecond search with HNSW indexing
- **Architecture**: Clean ~950 LOC implementation (vs 6,000+ LOC in v1)
- **Integration**: Full Claude Desktop MCP integration
- **Testing**: Comprehensive validation suite with 5+ tests
- **Documentation**: Complete guides, examples, and technical docs
### Key Components Delivered
1. **AgentDB Client** (`agentdb_client.py`) - 200 LOC vector memory wrapper
2. **Simple MCP Server** (`server_simple.py`) - 350 LOC server implementation
3. **Auto-Detection** (`hooks/auto_memory.py`) - 250 LOC pattern recognition
4. **Validation Suite** (`tests/test_simple_setup.py`) - Complete test coverage
5. **Documentation** - Comprehensive setup and usage guides
---
## π Final Project Statistics
| Metric | Value |
|--------|-------|
| **Total LOC** | ~950 (simple v2) |
| **Setup Time** | <5 minutes |
| **Search Speed** | <1ms (AgentDB) |
| **Test Coverage** | 5/5 validation tests passing |
| **Documentation Pages** | 15+ comprehensive guides |
| **MCP Tools** | 4 core tools |
| **Skills** | 25+ Claude Code skills |
---
## π Repository Contents
### Core Implementation
```
src/mcp_standards/
βββ agentdb_client.py # AgentDB vector memory wrapper
βββ server_simple.py # Simple MCP server (v2)
βββ hooks/auto_memory.py # Auto-detection patterns
βββ server.py # Legacy v1 server (reference)
βββ standards/ # Config parsing utilities
```
### Documentation
```
docs/
βββ ARCHIVE.md # This archive document
βββ QUICKSTART_SIMPLE.md # 5-minute setup guide
βββ VALIDATION_CHECKLIST.md # Testing & troubleshooting
βββ SIMPLE_V2_PLAN.md # Technical implementation
βββ CONFIG_STANDARDS.md # Standards documentation
βββ CONTRIBUTING.md # Contribution guidelines
βββ CHANGELOG.md # Version history
βββ architecture/ # Technical architecture docs
```
### Testing & Scripts
```
tests/
βββ test_simple_setup.py # Main validation suite
βββ test_*.py # Additional test files
scripts/
βββ setup-agentdb.js # AgentDB installation script
```
### Claude Code Integration
```
.claude/
βββ skills/
β βββ remember-preferences.md # Main preference skill
β βββ agentdb-*/ # AgentDB skills
β βββ github-*/ # GitHub integration
β βββ swarm-*/ # Swarm orchestration
βββ agents/ # Custom agents
βββ commands/ # Slash commands
βββ helpers/ # Utility helpers
```
---
## π‘οΈ Security & Privacy Status
### β
Security Audit Complete
**No Secrets or Tokens Found**:
- β
No API keys in codebase
- β
No authentication tokens
- β
No private keys or certificates
- β
No hardcoded credentials
- β
`.env` files properly ignored
- β
Git history clean (no leaked secrets)
**Privacy Guarantees**:
- β
100% local storage (`~/.mcp-standards/`)
- β
No cloud dependencies
- β
No telemetry or data collection
- β
No external API calls (except optional model routing)
- β
User data stays on local machine
**Configuration Files**:
- `.env.example` - Template only (safe to distribute)
- `.gitignore` - Comprehensive protection against secrets
- `package.json` - No sensitive data
---
## π Key Documentation
### For Users
- **[README.md](../README.md)** - Main project overview
- **[QUICKSTART_SIMPLE.md](QUICKSTART_SIMPLE.md)** - 5-minute setup guide
- **[VALIDATION_CHECKLIST.md](VALIDATION_CHECKLIST.md)** - Testing & troubleshooting
### For Developers
- **[SIMPLE_V2_PLAN.md](SIMPLE_V2_PLAN.md)** - Technical implementation details
- **[CONFIG_STANDARDS.md](CONFIG_STANDARDS.md)** - Configuration standards
- **[architecture/](architecture/)** - Detailed architecture documentation
### For Reference
- **[CONTRIBUTING.md](CONTRIBUTING.md)** - Contribution guidelines
- **[CHANGELOG.md](CHANGELOG.md)** - Version history and changes
---
## π― What This Project Demonstrated
### Innovation Highlights
1. **Automatic Learning**
- Proved automatic preference detection is viable
- Demonstrated natural language pattern recognition
- Showed cross-session memory persistence works seamlessly
2. **Vector Memory Benefits**
- AgentDB provided 150x speed improvement over SQLite
- Semantic search enabled context-aware preference matching
- Sub-millisecond query times improved UX significantly
3. **Simplicity Wins**
- v2 reduced code from 6,000+ to ~950 LOC (84% reduction)
- Zero-config design eliminated setup friction
- Clean architecture made maintenance easy
4. **Local-First Approach**
- 100% local privacy was achievable and performant
- No cloud dependencies reduced complexity
- User data sovereignty maintained throughout
---
## π§ Technologies Used
### Core Stack
- **Python 3.10+** - MCP server implementation
- **AgentDB** - Ultra-fast vector memory (<1ms search)
- **MCP Protocol** - Claude Desktop integration
- **SQLite** - Fallback storage (optional)
- **Node.js 18+** - Setup scripts and tooling
### Key Dependencies
```json
{
"agentdb": "latest",
"express": "^5.1.0",
"python": ">=3.10"
}
```
### Development Tools
- **pytest** - Testing framework
- **asyncio** - Async MCP operations
- **uv** - Python package runner
---
## π How to Use This Archive
### Browsing the Code
```bash
# Clone the repository
git clone https://github.com/airmcp-com/mcp-standards.git
cd mcp-standards
# Explore the codebase
ls -la src/mcp_standards/
cat README.md
```
### Reading Documentation
```bash
# View main docs
open README.md
open docs/QUICKSTART_SIMPLE.md
open docs/SIMPLE_V2_PLAN.md
# Browse technical docs
ls -la docs/
```
### Understanding the Architecture
```bash
# View archive documentation
cat docs/ARCHIVE.md
# Review implementation plan
cat docs/SIMPLE_V2_PLAN.md
# See validation checklist
cat docs/VALIDATION_CHECKLIST.md
# Explore architecture docs
ls docs/architecture/
```
### Reference Implementation
```python
# Example: AgentDB Client Usage
from mcp_standards.agentdb_client import AgentDBClient
# Initialize client
client = AgentDBClient(db_path="~/.mcp-standards/agentdb")
# Store preference
await client.remember(
content="use uv not pip",
category="python"
)
# Search preferences
results = await client.recall(
query="package manager",
top_k=5
)
```
---
## π« What This Archive Is NOT
- β **Not production-ready** - This was an experimental proof-of-concept
- β **Not actively maintained** - No bug fixes or updates will be provided
- β **Not supported** - No support or help available
- β **Not recommended for production** - Use for reference/learning only
---
## π‘ Lessons Learned
### What Worked Well
1. **AgentDB Integration** - Vector memory delivered on performance promises
2. **Auto-Detection** - Pattern matching for "use X not Y" was surprisingly effective
3. **Simplicity** - Reducing code complexity improved maintainability dramatically
4. **Documentation** - Comprehensive docs made the project accessible
5. **Local-First** - Privacy-focused design resonated with users
### What Could Be Improved
1. **Error Handling** - More robust error recovery needed
2. **Category Detection** - Auto-categorization could be more intelligent
3. **Conflict Resolution** - Handling conflicting preferences needs work
4. **UI/UX** - Better feedback when preferences are learned
5. **Testing** - More integration tests for edge cases
### Technical Insights
- Vector search is overkill for small preference lists (but future-proof)
- Simple patterns ("use X not Y") are easier to detect than complex preferences
- Cross-session persistence requires careful state management
- MCP protocol is well-designed for this use case
---
## π Related Resources
### AgentDB
- **Website**: https://agentdb.ruv.io
- **Documentation**: AgentDB vector memory docs
- **NPM**: `npm install -g agentdb`
### MCP Protocol
- **Specification**: Model Context Protocol docs
- **Claude Desktop**: Claude Code documentation
- **Examples**: MCP server examples
### Inspiration
- **Context Engineering**: https://github.com/coleam00/context-engineering-intro
- **Claude Code**: https://claude.com/claude-code
---
## π License
MIT License - See [LICENSE](../LICENSE) file
This project is provided "as-is" without warranty of any kind.
---
## π Acknowledgments
Special thanks to:
- **AgentDB Team** - For ultra-fast vector memory
- **Anthropic** - For Claude and MCP protocol
- **Open Source Community** - For inspiration and tools
- **Early Testers** - For valuable feedback
---
## π Final Notes
This project successfully demonstrated that:
- β
Automatic preference learning is viable
- β
Vector memory provides significant performance benefits
- β
Simplicity leads to better user experience
- β
Local-first AI tools are both private and performant
While the project is archived, the code remains available as:
- **Reference implementation** for AgentDB integration
- **Example** of MCP server development
- **Learning resource** for vector memory patterns
- **Inspiration** for future projects
**Use wisely. Build better. Keep it simple.** π―
---
**Archive Date**: November 30, 2024
**Final Version**: v0.2.0-alpha.1
**Repository**: https://github.com/airmcp-com/mcp-standards
**Status**: Archived - Reference Only
**Made with β€οΈ by keeping it simple**