Skip to main content
Glama

AgenticRAG MCP Server

by aibozo
test_direct_search.py1.43 kB
#!/usr/bin/env python3 """Test direct vector search.""" import asyncio from dotenv import load_dotenv from src.storage.vector_store import VectorStore from src.indexing.embedder import Embedder load_dotenv() async def test_search(): # Initialize components vector_store = VectorStore(collection_name="agenticrag_test") embedder = Embedder() # Test queries queries = [ "TextChunker class", "how does chunking work", "RetrieverAgent", "embeddings generation" ] for query in queries: print(f"\n{'='*60}") print(f"Query: {query}") print(f"{'='*60}") # Generate embedding embedding_result = await embedder.embed_single(query) # Search results = await vector_store.search( query_embedding=embedding_result.embedding, repo_name="agenticrag_test", k=5 ) print(f"Found {len(results)} results:") for i, result in enumerate(results, 1): print(f"\n{i}. Keys: {list(result.keys())}") print(f" File: {result['metadata']['file_path']}") print(f" Lines: {result['metadata']['start_line']}-{result['metadata']['end_line']}") print(f" Content preview: {result.get('content', result.get('document', 'N/A'))[:100]}...") if __name__ == "__main__": asyncio.run(test_search())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/aibozo/agenticRAG-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server