Skip to main content
Glama

AgenticRAG MCP Server

by aibozo
debug_search.py1.56 kB
#!/usr/bin/env python3 """Debug why search isn't working.""" import asyncio from dotenv import load_dotenv from src.storage.vector_store import VectorStore from src.indexing.embedder import Embedder load_dotenv() async def debug_search(): vector_store = VectorStore(collection_name="agenticrag_test") embedder = Embedder() # First, check what's in the collection print("Checking collection contents...") collection = vector_store.collection print(f"Total documents: {collection.count()}") # Get sample documents sample = collection.get(limit=3) print("\nSample documents:") for i, (id, meta) in enumerate(zip(sample['ids'], sample['metadatas'])): print(f"{i+1}. {meta['file_path']} - repo: {meta.get('repo_name', 'N/A')}") # Now test search with a simple query query = "TextChunker" print(f"\nSearching for: '{query}'") embedding_result = await embedder.embed_single(query) # Try direct ChromaDB query results = collection.query( query_embeddings=[embedding_result.embedding], n_results=5, where={"repo_name": "agenticrag_test"} ) print(f"\nDirect ChromaDB results: {len(results['ids'][0])} found") # Also try via vector_store.search results2 = await vector_store.search( query_embedding=embedding_result.embedding, repo_name="agenticrag_test", k=5 ) print(f"VectorStore.search results: {len(results2)} found") if __name__ == "__main__": asyncio.run(debug_search())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/aibozo/agenticRAG-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server