Skip to main content
Glama

MCP de obtención de URL

Una implementación limpia del Protocolo de Contexto de Modelo (MCP) que permite a Claude o cualquier LLM obtener contenido de las URL.

Características

  • Obtener contenido desde cualquier URL

  • Soporte para múltiples tipos de contenido (HTML, JSON, texto, imágenes)

  • Control sobre los parámetros de la solicitud (encabezados, tiempo de espera)

  • Manejo limpio de errores

  • Funciona con Claude Code y Claude Desktop

Related MCP server: @kazuph/mcp-fetch

Estructura del repositorio

url-fetch-mcp/ ├── examples/ # Example scripts and usage demos ├── scripts/ # Helper scripts (installation, etc.) ├── src/ │ └── url_fetch_mcp/ # Main package code │ ├── __init__.py │ ├── __main__.py │ ├── cli.py # Command-line interface │ ├── fetch.py # URL fetching utilities │ ├── main.py # Core MCP server implementation │ └── utils.py # Helper utilities ├── LICENSE ├── pyproject.toml # Project configuration ├── README.md └── url_fetcher.py # Standalone launcher for Claude Desktop

Instalación

# Install from source pip install -e . # Install with development dependencies pip install -e ".[dev]"

Uso

Ejecución del servidor

# Run with stdio transport (for Claude Code) python -m url_fetch_mcp run # Run with HTTP+SSE transport (for remote connections) python -m url_fetch_mcp run --transport sse --port 8000

Instalación en Claude Desktop

Hay tres formas de instalar en Claude Desktop:

Método 1: Instalación directa

# Install the package pip install -e . # Install in Claude Desktop using the included script mcp install url_fetcher.py -n "URL Fetcher"

El archivo url_fetcher.py contiene:

#!/usr/bin/env python """ URL Fetcher MCP Server This is a standalone script for launching the URL Fetch MCP server. It's used for installing in Claude Desktop with the command: mcp install url_fetcher.py -n "URL Fetcher" """ from url_fetch_mcp.main import app if __name__ == "__main__": app.run()

Método 2: utilizar el script de instalación

# Install the package pip install -e . # Run the installer script python scripts/install_desktop.py

El scripts/install_desktop.py :

#!/usr/bin/env python import os import sys import tempfile import subprocess def install_desktop(): """Install URL Fetch MCP in Claude Desktop.""" print("Installing URL Fetch MCP in Claude Desktop...") # Create a temporary Python file that imports our module temp_dir = tempfile.mkdtemp() temp_file = os.path.join(temp_dir, "url_fetcher.py") with open(temp_file, "w") as f: f.write("""#!/usr/bin/env python # URL Fetcher MCP Server from url_fetch_mcp.main import app if __name__ == "__main__": app.run() """) # Make the file executable os.chmod(temp_file, 0o755) # Run the mcp install command with the file path try: cmd = ["mcp", "install", temp_file, "-n", "URL Fetcher"] print(f"Running: {' '.join(cmd)}") result = subprocess.run(cmd, check=True, text=True) print("Installation successful!") print("You can now use the URL Fetcher tool in Claude Desktop.") return 0 except subprocess.CalledProcessError as e: print(f"Error during installation: {str(e)}") return 1 finally: # Clean up temporary file try: os.unlink(temp_file) os.rmdir(temp_dir) except: pass if __name__ == "__main__": sys.exit(install_desktop())

Método 3: utilizar el comando CLI

# Install the package pip install -e . # Install using the built-in CLI command python -m url_fetch_mcp install-desktop

Implementación básica

La implementación principal de MCP está en src/url_fetch_mcp/main.py :

from typing import Annotated, Dict, Optional import base64 import json import httpx from pydantic import AnyUrl, Field from mcp.server.fastmcp import FastMCP, Context # Create the MCP server app = FastMCP( name="URL Fetcher", version="0.1.0", description="A clean MCP implementation for fetching content from URLs", ) @app.tool() async def fetch_url( url: Annotated[AnyUrl, Field(description="The URL to fetch")], headers: Annotated[ Optional[Dict[str, str]], Field(description="Additional headers to send with the request") ] = None, timeout: Annotated[int, Field(description="Request timeout in seconds")] = 10, ctx: Context = None, ) -> str: """Fetch content from a URL and return it as text.""" # Implementation details... @app.tool() async def fetch_image( url: Annotated[AnyUrl, Field(description="The URL to fetch the image from")], timeout: Annotated[int, Field(description="Request timeout in seconds")] = 10, ctx: Context = None, ) -> Dict: """Fetch an image from a URL and return it as an image.""" # Implementation details... @app.tool() async def fetch_json( url: Annotated[AnyUrl, Field(description="The URL to fetch JSON from")], headers: Annotated[ Optional[Dict[str, str]], Field(description="Additional headers to send with the request") ] = None, timeout: Annotated[int, Field(description="Request timeout in seconds")] = 10, ctx: Context = None, ) -> str: """Fetch JSON from a URL, parse it, and return it formatted.""" # Implementation details...

Capacidades de la herramienta

obtener_url

Obtiene contenido de una URL y lo devuelve como texto.

Parámetros:

  • url (obligatorio): La URL a buscar

  • headers (opcional): encabezados adicionales para enviar con la solicitud

  • timeout (opcional): tiempo de espera de la solicitud en segundos (predeterminado: 10)

obtener_imagen

Obtiene una imagen de una URL y la devuelve como una imagen.

Parámetros:

  • url (obligatorio): La URL desde donde obtener la imagen

  • timeout (opcional): tiempo de espera de la solicitud en segundos (predeterminado: 10)

obtener_json

Obtiene JSON de una URL, lo analiza y lo devuelve formateado.

Parámetros:

  • url (obligatorio): La URL desde la cual obtener el JSON

  • headers (opcional): encabezados adicionales para enviar con la solicitud

  • timeout (opcional): tiempo de espera de la solicitud en segundos (predeterminado: 10)

Ejemplos

El directorio examples contiene scripts de ejemplo:

  • quick_test.py : Prueba rápida del servidor MCP

  • simple_usage.py : Ejemplo de uso de la API del cliente

  • interactive_client.py : CLI interactiva para pruebas

# Example of fetching a URL result = await session.call_tool("fetch_url", { "url": "https://example.com" }) # Example of fetching JSON data result = await session.call_tool("fetch_json", { "url": "https://api.example.com/data", "headers": {"Authorization": "Bearer token"} }) # Example of fetching an image result = await session.call_tool("fetch_image", { "url": "https://example.com/image.jpg" })

Pruebas

Para probar la funcionalidad básica:

# Run a direct test of URL fetching python direct_test.py # Run a simplified test with the MCP server python examples/quick_test.py

Licencia

Instituto Tecnológico de Massachusetts (MIT)

A
security – no known vulnerabilities
A
license - permissive license
A
quality - confirmed to work

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/aelaguiz/mcp-url-fetch'

If you have feedback or need assistance with the MCP directory API, please join our Discord server