Provides access to PubMed's E-utilities API for searching biomedical literature, retrieving article metadata, abstracts, and full content. Supports flexible queries, batch operations, and multiple output formats (XML, JSON, text).
PubMed MCP Server
A Model Context Protocol (MCP) server that provides access to PubMed's E-utilities API for searching and downloading scientific articles. This server enables LLM applications to search PubMed's vast database of biomedical literature and retrieve article metadata, abstracts, and full content.
Features
Article Search: Search PubMed database with flexible query terms
Article Download: Retrieve full article metadata, abstracts, and available content
Batch Operations: Download multiple articles in a single request
Article Summaries: Get document summaries with metadata
Multiple Formats: Support for XML, JSON, and text output formats
Rate Limiting: Automatic rate limiting to respect PubMed API limits
Error Handling: Robust error handling for API failures
Installation
Quick Setup (Recommended)
Clone or download this repository
Run the setup script:
./setup.shThis will create a virtual environment, install dependencies, and provide next steps.
Manual Setup
Clone or download this repository
Create and activate virtual environment:
python3 -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activateInstall dependencies:
pip install -r requirements.txtConfigure environment (optional but recommended):
cp .env.example .env # Edit .env file with your NCBI API key and email
Configuration
Environment Variables
Create a .env file with the following optional configuration:
NCBI_API_KEY: Your NCBI API key (increases rate limit from 3 to 10 requests/second)NCBI_EMAIL: Your email address (recommended by NCBI for API usage tracking)
Get your free NCBI API key at: https://www.ncbi.nlm.nih.gov/account/settings/
Usage
Running the Server
Activate the virtual environment (if not already active):
source venv/bin/activate # On Windows: venv\Scripts\activateRun the server:
python server.py
The server will start and listen for MCP connections via stdio.
To deactivate the virtual environment when done:
deactivate
Available Tools
1. search_articles
Search PubMed for articles matching a query.
Parameters:
query(string, required): Search query (e.g., "COVID-19 vaccines", "machine learning AND healthcare")max_results(int, optional): Maximum results to return (default: 20, max: 200)sort(string, optional): Sort order - "relevance", "pub_date", or "first_author" (default: "relevance")
Returns:
pmids: List of PubMed IDstotal_count: Total number of matching articlesquery_used: The search query executedresults_returned: Number of results returnedsort_order: Sort order used
Example:
2. download_article
Download article details by PubMed ID.
Parameters:
pmid(string, required): PubMed ID (e.g., "33073741")format_type(string, optional): Content format - "abstract", "medline", or "full" (default: "abstract")return_mode(string, optional): Return format - "xml", "text", or "json" (default: "xml")
Returns:
pmid: The PubMed IDcontent: Article content in requested formatformat_type: Format type usedreturn_mode: Return mode usedcontent_length: Length of content
3. download_articles_batch
Download multiple articles in a single request.
Parameters:
pmids(list, required): List of PubMed IDsformat_type(string, optional): Content format (default: "abstract")return_mode(string, optional): Return format (default: "xml")
Returns:
pmids: List of requested PMIDscontent: Combined article contentarticle_count: Number of articles requestedcontent_length: Length of content
4. get_article_summaries
Get document summaries for articles (metadata without full content).
Parameters:
pmids(list, required): List of PubMed IDs
Returns:
pmids: List of requested PMIDssummaries: XML summary dataarticle_count: Number of articles requested
Search Query Examples
Basic Searches
"COVID-19"- Search for COVID-19 articles"machine learning"- Search for machine learning articles"breast cancer"- Search for breast cancer articles
Advanced Searches
"COVID-19 AND vaccine"- Articles about COVID-19 vaccines"machine learning AND healthcare"- ML in healthcare"CRISPR[Title]"- CRISPR in article titles only"Nature[Journal]"- Articles from Nature journal"2023[PDAT]"- Articles published in 2023"Smith J[Author]"- Articles by author "Smith J"
Field-Specific Searches
[Title]- Search in title only[Author]- Search by author[Journal]- Search by journal name[PDAT]- Search by publication date[MeSH]- Search MeSH terms
Integration with Claude Desktop
Option 1: Using .env file (Recommended)
If you configured your API key in the .env file during installation:
Option 2: Configure in Claude Desktop
Alternatively, you can specify the API key directly in the Claude Desktop configuration:
Recommendation: Use Option 1 (.env file) for better security and easier management.
Note: Make sure to use the full path to the Python executable in the virtual environment (venv/bin/python) to ensure the correct dependencies are available.
Rate Limits
Without API key: 3 requests per second
With API key: 10 requests per second
Batch size limit: 50 articles per batch request
Error Handling
The server provides comprehensive error handling:
Invalid PMIDs are automatically cleaned (non-numeric characters removed)
Empty queries return descriptive errors
API failures are caught and reported
Rate limiting prevents API abuse
Development
Project Structure
Dependencies
mcp[cli]- MCP Python SDKrequests- HTTP client for PubMed APIpython-dotenv- Environment variablestyping-extensions- Type hints support
License
This project is open source. Please check PubMed's terms of service for API usage guidelines.
Support
For issues with this MCP server, please check:
Your API key and email configuration
Network connectivity to NCBI servers
Rate limiting compliance
Valid PMID formats
For PubMed API documentation, visit: https://www.ncbi.nlm.nih.gov/books/NBK25500/