Skip to main content
Glama

Awesome-MCP-Scaffold

by WW-AI-Lab
run.py3.35 kB
#!/usr/bin/env python3 """ Awesome MCP Scaffold 启动脚本 简化的启动入口,支持多种运行模式。 """ import sys import argparse from pathlib import Path # 添加项目根目录到 Python 路径 project_root = Path(__file__).parent sys.path.insert(0, str(project_root)) from server.main import main def create_parser(): """创建命令行参数解析器""" parser = argparse.ArgumentParser( description="Awesome MCP Scaffold - 启动 MCP 服务器", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=""" 示例用法: python run.py # 使用默认配置启动 python run.py --transport stdio # 使用 stdio 传输 python run.py --port 9000 # 指定端口 python run.py --debug # 启用调试模式 python run.py --env production # 生产环境模式 """ ) parser.add_argument( "--transport", choices=["stdio", "streamable-http", "sse"], default="streamable-http", help="传输协议 (默认: streamable-http)" ) parser.add_argument( "--host", default="127.0.0.1", help="服务器主机地址 (默认: 127.0.0.1)" ) parser.add_argument( "--port", type=int, default=8000, help="服务器端口 (默认: 8000)" ) parser.add_argument( "--env", choices=["development", "testing", "production"], default="development", help="运行环境 (默认: development)" ) parser.add_argument( "--debug", action="store_true", help="启用调试模式" ) parser.add_argument( "--log-level", choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"], default="INFO", help="日志级别 (默认: INFO)" ) return parser def main_cli(): """命令行主函数""" parser = create_parser() args = parser.parse_args() # 设置环境变量 import os os.environ["TRANSPORT"] = args.transport os.environ["HOST"] = args.host os.environ["PORT"] = str(args.port) os.environ["ENVIRONMENT"] = args.env os.environ["DEBUG"] = str(args.debug).lower() os.environ["LOG_LEVEL"] = args.log_level # 显示启动信息 print("🚀 Awesome MCP Scaffold") print("=" * 50) print(f"📡 传输协议: {args.transport}") print(f"🏠 主机地址: {args.host}") print(f"🔌 端口号: {args.port}") print(f"🌍 运行环境: {args.env}") print(f"🐛 调试模式: {'开启' if args.debug else '关闭'}") print(f"📝 日志级别: {args.log_level}") print("=" * 50) if args.transport == "streamable-http": print(f"🌐 访问地址: http://{args.host}:{args.port}") print(f"🔍 健康检查: http://{args.host}:{args.port}/health") print(f"📊 服务器信息: http://{args.host}:{args.port}/info") print(f"🔧 MCP 端点: http://{args.host}:{args.port}/mcp") print("=" * 50) # 启动服务器 try: main() except KeyboardInterrupt: print("\n👋 服务器已停止") except Exception as e: print(f"❌ 启动失败: {e}") sys.exit(1) if __name__ == "__main__": main_cli()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/WW-AI-Lab/Awesome-MCP-Scaffold'

If you have feedback or need assistance with the MCP directory API, please join our Discord server