Skip to main content
Glama

Awesome-MCP-Scaffold

by WW-AI-Lab
Makefile3.94 kB
# Awesome MCP Scaffold Makefile # 提供常用的开发和部署命令 .PHONY: help install dev test lint format clean build run docs deploy # 默认目标 help: @echo "Awesome MCP Scaffold - 可用命令:" @echo "" @echo "开发命令:" @echo " install 安装依赖" @echo " dev 启动开发服务器" @echo " test 运行测试" @echo " lint 代码检查" @echo " format 代码格式化" @echo " clean 清理临时文件" @echo "" @echo "构建和部署:" @echo " build 构建应用" @echo " run 运行生产服务器" @echo " docs 生成文档" @echo " deploy 部署到生产环境" @echo "" # 安装依赖 install: @echo "📦 安装 Python 依赖..." pip install -r requirements.txt pip install -e . @echo "✅ 依赖安装完成" # 开发环境安装 install-dev: install @echo "🔧 安装开发依赖..." pip install pytest pytest-asyncio pytest-cov ruff mypy pre-commit pre-commit install @echo "✅ 开发环境配置完成" # 启动开发服务器 dev: @echo "🚀 启动开发服务器..." python -m server.main # 使用 FastMCP CLI 启动开发服务器 dev-fastmcp: @echo "🚀 使用 FastMCP CLI 启动开发服务器..." fastmcp dev server/main.py # 运行测试 test: @echo "🧪 运行测试..." pytest tests/ -v --cov=server --cov-report=html --cov-report=term # 运行特定测试 test-tools: pytest tests/test_tools.py -v test-integration: pytest tests/ -k "integration" -v # 代码检查 lint: @echo "🔍 代码检查..." ruff check server/ tests/ mypy server/ # 代码格式化 format: @echo "✨ 代码格式化..." ruff format server/ tests/ ruff check --fix server/ tests/ # 清理临时文件 clean: @echo "🧹 清理临时文件..." find . -type d -name "__pycache__" -exec rm -rf {} + 2>/dev/null || true find . -type f -name "*.pyc" -delete find . -type d -name "*.egg-info" -exec rm -rf {} + 2>/dev/null || true rm -rf build/ dist/ .coverage htmlcov/ .pytest_cache/ @echo "✅ 清理完成" # 构建应用 build: @echo "🏗️ 构建应用..." python -m build @echo "✅ 构建完成" # 运行生产服务器 run: @echo "🚀 启动生产服务器..." ENVIRONMENT=production python -m server.main # 使用 uvicorn 运行 run-uvicorn: @echo "🚀 使用 uvicorn 启动服务器..." uvicorn server.main:create_app --factory --host 0.0.0.0 --port 8000 # 生成文档 docs: @echo "📚 生成文档..." # 这里可以添加文档生成命令,如 Sphinx @echo "✅ 文档生成完成" # Docker 构建 docker-build: @echo "🐳 构建 Docker 镜像..." docker build -t awesome-mcp-scaffold . # Docker 运行 docker-run: @echo "🐳 运行 Docker 容器..." docker run -p 8000:8000 awesome-mcp-scaffold # 部署到生产环境 deploy: @echo "🚀 部署到生产环境..." # 这里添加具体的部署命令 @echo "✅ 部署完成" # 健康检查 health: @echo "🏥 检查服务器健康状态..." curl -s http://localhost:8000/health | python -m json.tool # 查看服务器信息 info: @echo "ℹ️ 获取服务器信息..." curl -s http://localhost:8000/info | python -m json.tool # 查看 API 端点 api: @echo "🔗 查看可用 API 端点..." @echo "Tools: http://localhost:8000/api/v1/tools" @echo "Resources: http://localhost:8000/api/v1/resources" @echo "Prompts: http://localhost:8000/api/v1/prompts" @echo "Status: http://localhost:8000/api/v1/status" # 初始化项目 init: @echo "🎉 初始化 Awesome MCP Scaffold 项目..." cp env.example .env mkdir -p workspace logs make install-dev @echo "✅ 项目初始化完成!" @echo "" @echo "下一步:" @echo "1. 编辑 .env 文件配置环境变量" @echo "2. 运行 'make dev' 启动开发服务器" @echo "3. 访问 http://localhost:8000 查看服务器状态" # 完整的开发工作流 workflow: clean format lint test @echo "🎯 开发工作流完成!"

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/WW-AI-Lab/Awesome-MCP-Scaffold'

If you have feedback or need assistance with the MCP directory API, please join our Discord server