Skip to main content
Glama

create_collection

Organize documents by creating a new section or category, setting up project workspaces, or grouping content by department or topic. Customize with a name, optional description, and color for easy identification.

Instructions

Creates a new collection for organizing documents. Use this tool when you need to: - Create a new section or category for documents - Set up a workspace for a new project or team - Organize content by department or topic - Establish a separate space for related documents Args: name: Name for the collection description: Optional description of the collection's purpose color: Optional hex color code for visual identification (e.g. #FF0000) Returns: Result message with the new collection ID

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
colorNo
descriptionNo
nameYes

Implementation Reference

  • The MCP tool handler function that creates a new collection. It calls the OutlineClient helper and returns a success message with the collection ID.
    async def create_collection( name: str, description: str = "", color: Optional[str] = None ) -> str: """ Creates a new collection for organizing documents. Use this tool when you need to: - Create a new section or category for documents - Set up a workspace for a new project or team - Organize content by department or topic - Establish a separate space for related documents Args: name: Name for the collection description: Optional description of the collection's purpose color: Optional hex color code for visual identification (e.g. #FF0000) Returns: Result message with the new collection ID """ try: client = await get_outline_client() collection = await client.create_collection( name, description, color ) if not collection: return "Failed to create collection." collection_id = collection.get("id", "unknown") collection_name = collection.get("name", "Untitled") return ( f"Collection created successfully: {collection_name} " f"(ID: {collection_id})" ) except OutlineClientError as e: return f"Error creating collection: {str(e)}" except Exception as e: return f"Unexpected error: {str(e)}"
  • OutlineClient helper method that performs the actual API POST request to create the collection.
    async def create_collection( self, name: str, description: str = "", color: Optional[str] = None ) -> Dict[str, Any]: """ Create a new collection. Args: name: The name of the collection description: Optional description for the collection color: Optional hex color code for the collection Returns: The created collection data """ data: Dict[str, Any] = {"name": name, "description": description} if color: data["color"] = color response = await self.post("collections.create", data) return response.get("data", {})
  • Registration call for collection tools module during documents feature setup. This invokes the register_tools function that defines and registers the create_collection tool.
    collection_tools.register_tools(mcp)
  • The @mcp.tool decorator that registers the create_collection handler with the MCP server, including tool annotations.
    @mcp.tool( annotations=ToolAnnotations( readOnlyHint=False, destructiveHint=False, idempotentHint=False, ) )

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Vortiago/mcp-outline'

If you have feedback or need assistance with the MCP directory API, please join our Discord server