MCP-Smallest.ai

Integrations

  • Utilizes environment variables for configuration management, specifically for storing the Smallest.ai API key securely.

  • Supports running the MCP server on the Bun runtime, providing an alternative execution environment to Node.js for the server implementation.

  • Hosts project repository and provides version control, allowing for collaborative development and contribution to the MCP server.

MCP-Smallest.ai

A Model Context Protocol (MCP) server implementation for Smallest.ai API integration. This project provides a standardized interface for interacting with Smallest.ai's knowledge base management system.

Architecture

System Overview

┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │ │ │ │ │ │ │ Client App │◄────┤ MCP Server │◄────┤ Smallest.ai │ │ │ │ │ │ API │ └─────────────────┘ └─────────────────┘ └─────────────────┘

Component Details

1. Client Application Layer
  • Implements MCP client protocol
  • Handles request formatting
  • Manages response parsing
  • Provides error handling
2. MCP Server Layer
  • Protocol Handler
    • Manages MCP protocol communication
    • Handles client connections
    • Routes requests to appropriate tools
  • Tool Implementation
    • Knowledge base management tools
    • Parameter validation
    • Response formatting
    • Error handling
  • API Integration
    • Smallest.ai API communication
    • Authentication management
    • Request/response handling
3. Smallest.ai API Layer
  • Knowledge base management
  • Data storage and retrieval
  • Authentication and authorization

Data Flow

1. Client Request └─► MCP Protocol Validation └─► Tool Parameter Validation └─► API Request Formation └─► Smallest.ai API Call └─► Response Processing └─► Client Response

Security Architecture

┌─────────────────┐ │ Client Auth │ └────────┬────────┘ │ ┌────────▼────────┐ │ MCP Validation │ └────────┬────────┘ │ ┌────────▼────────┐ │ API Auth │ └────────┬────────┘ │ ┌────────▼────────┐ │ Smallest.ai │ └─────────────────┘

Overview

This project implements an MCP server that acts as a middleware between clients and the Smallest.ai API. It provides a standardized way to interact with Smallest.ai's knowledge base management features through the Model Context Protocol.

Architecture

[Client Application] <---> [MCP Server] <---> [Smallest.ai API]

Components

  1. MCP Server
    • Handles client requests
    • Manages API communication
    • Provides standardized responses
    • Implements error handling
  2. Knowledge Base Tools
    • listKnowledgeBases: Lists all knowledge bases
    • createKnowledgeBase: Creates new knowledge bases
    • getKnowledgeBase: Retrieves specific knowledge base details
  3. Documentation Resource
    • Available at docs://smallest.ai
    • Provides usage instructions and examples

Prerequisites

  • Node.js 18+ or Bun runtime
  • Smallest.ai API key
  • TypeScript knowledge

Installation

  1. Clone the repository:
git clone https://github.com/yourusername/MCP-smallest.ai.git cd MCP-smallest.ai
  1. Install dependencies:
bun install
  1. Create a .env file in the root directory:
SMALLEST_AI_API_KEY=your_api_key_here

Configuration

Create a config.ts file with your Smallest.ai API configuration:

export const config = { API_KEY: process.env.SMALLEST_AI_API_KEY, BASE_URL: 'https://atoms-api.smallest.ai/api/v1' };

Usage

Starting the Server

bun run index.ts

Testing the Server

bun run test-client.ts

Available Tools

  1. List Knowledge Bases
await client.callTool({ name: "listKnowledgeBases", arguments: {} });
  1. Create Knowledge Base
await client.callTool({ name: "createKnowledgeBase", arguments: { name: "My Knowledge Base", description: "Description of the knowledge base" } });
  1. Get Knowledge Base
await client.callTool({ name: "getKnowledgeBase", arguments: { id: "knowledge_base_id" } });

Response Format

All responses follow this structure:

{ content: [{ type: "text", text: JSON.stringify(data, null, 2) }] }

Error Handling

The server implements comprehensive error handling:

  • HTTP errors
  • API errors
  • Parameter validation errors
  • Type-safe error responses

Development

Project Structure

MCP-smallest.ai/ ├── index.ts # MCP server implementation ├── test-client.ts # Test client implementation ├── config.ts # Configuration file ├── package.json # Project dependencies ├── tsconfig.json # TypeScript configuration └── README.md # This file

Adding New Tools

  1. Define the tool in index.ts:
server.tool( "toolName", { param1: z.string(), param2: z.number() }, async (args) => { // Implementation } );
  1. Update documentation in the resource:
server.resource( "documentation", "docs://smallest.ai", async (uri) => ({ contents: [{ uri: uri.href, text: `Updated documentation...` }] }) );

Security

  • API keys are stored in environment variables
  • All requests are authenticated
  • Parameter validation is implemented
  • Error messages are sanitized

Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

You must be authenticated.

A
security – no known vulnerabilities
F
license - not found
A
quality - confirmed to work

A Model Context Protocol server implementation that provides a standardized interface for interacting with Smallest.ai's knowledge base management system.

  1. Architecture
    1. System Overview
    2. Component Details
    3. Data Flow
    4. Security Architecture
  2. Overview
    1. Architecture
      1. Components
    2. Prerequisites
      1. Installation
        1. Configuration
          1. Usage
            1. Starting the Server
            2. Testing the Server
            3. Available Tools
          2. Response Format
            1. Error Handling
              1. Development
                1. Project Structure
                2. Adding New Tools
              2. Security
                1. Contributing
                  1. License
                    1. Acknowledgments

                      Related MCP Servers

                      • A
                        security
                        F
                        license
                        A
                        quality
                        A Model Context Protocol server that enables AI models to interact with SourceSync.ai's knowledge management platform for managing documents, ingesting content from various sources, and performing semantic searches.
                        Last updated -
                        25
                        14
                        • Apple
                        • Linux
                      • -
                        security
                        F
                        license
                        -
                        quality
                        A Model Context Protocol server that provides AI assistants with structured access to your Logseq knowledge graph, enabling retrieval, searching, analysis, and creation of content within your personal knowledge base.
                        Last updated -
                        19
                        TypeScript
                        • Apple
                      • -
                        security
                        F
                        license
                        -
                        quality
                        A Model Context Protocol server that provides a comprehensive interface for interacting with the ConnectWise Manage API, simplifying API discovery, execution, and management for both developers and AI assistants.
                        Last updated -
                        46
                        2
                        Python
                        • Linux
                        • Apple
                      • -
                        security
                        F
                        license
                        -
                        quality
                        A demonstration implementation of the Model Context Protocol server that facilitates communication between AI models and external tools while maintaining context awareness.
                        Last updated -
                        Python
                        • Linux
                        • Apple

                      View all related MCP servers

                      ID: gens081rtr