metacognitivemonitoring
Systematically monitor knowledge boundaries, claim certainty, and reasoning biases to improve decision-making quality and track cognitive processes.
Instructions
A detailed tool for systematic self-monitoring of knowledge and reasoning quality. This tool helps models track knowledge boundaries, claim certainty, and reasoning biases. It provides a framework for metacognitive assessment across various domains and reasoning tasks.
Input Schema
TableJSON Schema
| Name | Required | Description | Default |
|---|---|---|---|
| task | Yes | ||
| stage | Yes | ||
| knowledgeAssessment | No | ||
| claims | No | ||
| reasoningSteps | No | ||
| overallConfidence | Yes | ||
| uncertaintyAreas | Yes | ||
| recommendedApproach | Yes | ||
| monitoringId | Yes | Unique identifier for this monitoring session | |
| iteration | Yes | Current iteration of the monitoring process | |
| suggestedAssessments | No | ||
| nextAssessmentNeeded | Yes | Whether further assessment is needed |
Implementation Reference
- Main handler method processMetacognitiveMonitoring that validates input, formats detailed output for console, and returns JSON status response.public processMetacognitiveMonitoring(input: unknown): { content: Array<{ type: string; text: string }>; isError?: boolean } { try { const validatedData = this.validateInputData(input); const formattedOutput = this.formatOutput(validatedData); console.error(formattedOutput); return { content: [{ type: "text", text: JSON.stringify({ task: validatedData.task, stage: validatedData.stage, monitoringId: validatedData.monitoringId, iteration: validatedData.iteration, overallConfidence: validatedData.overallConfidence, nextAssessmentNeeded: validatedData.nextAssessmentNeeded, status: 'success' }, null, 2) }] }; } catch (error) { return { content: [{ type: "text", text: JSON.stringify({ error: error instanceof Error ? error.message : String(error), status: 'failed' }, null, 2) }], isError: true }; } }
- Helper method validateInputData that checks required fields and validates data types and ranges.private validateInputData(input: unknown): MetacognitiveMonitoringData { const data = input as MetacognitiveMonitoringData; if (!data.task || !data.stage || !data.monitoringId) { throw new Error("Invalid input for MetacognitiveMonitoring: Missing required fields."); } if (typeof data.overallConfidence !== 'number' || data.overallConfidence < 0 || data.overallConfidence > 1) { throw new Error("Invalid overallConfidence value for MetacognitiveMonitoringData."); } if (typeof data.iteration !== 'number' || data.iteration < 0) { throw new Error("Invalid iteration value for MetacognitiveMonitoringData."); } if (typeof data.nextAssessmentNeeded !== 'boolean') { throw new Error("Invalid nextAssessmentNeeded value for MetacognitiveMonitoringData."); } return data; }
- Helper method formatOutput that generates a richly formatted console output using chalk, covering all aspects of the monitoring data.private formatOutput(data: MetacognitiveMonitoringData): string { const { task, stage, overallConfidence, uncertaintyAreas, recommendedApproach, iteration } = data; let output = `\n${chalk.bold.blue('Metacognitive Monitoring')}\n`; output += `${chalk.bold.green('Task:')} ${task}\n`; output += `${chalk.bold.yellow('Stage:')} ${stage} (Iteration: ${iteration})\n`; output += `${chalk.bold.magenta('Overall Confidence:')} ${(overallConfidence * 100).toFixed(1)}%\n`; // Knowledge Assessment if (data.knowledgeAssessment) { const ka = data.knowledgeAssessment; output += `\n${chalk.bold.cyan('Knowledge Assessment:')}\n`; output += `${chalk.bold('Domain:')} ${ka.domain}\n`; output += `${chalk.bold('Level:')} ${ka.knowledgeLevel} (${(ka.confidenceScore * 100).toFixed(1)}% confidence)\n`; output += `${chalk.bold('Evidence:')} ${ka.supportingEvidence}\n`; if (ka.knownLimitations.length > 0) { output += `${chalk.bold('Known Limitations:')}\n`; ka.knownLimitations.forEach((limitation, i) => { output += ` ${chalk.bold(`${i+1}.`)} ${limitation}\n`; }); } } // Claims if (data.claims && data.claims.length > 0) { output += `\n${chalk.bold.green('Claims:')}\n`; data.claims.forEach((claim, i) => { output += `${chalk.bold(`Claim ${i+1}:`)} ${claim.claim}\n`; output += ` ${chalk.bold('Status:')} ${claim.status} (${(claim.confidenceScore * 100).toFixed(1)}% confidence)\n`; output += ` ${chalk.bold('Evidence:')} ${claim.evidenceBasis}\n`; if (claim.alternativeInterpretations && claim.alternativeInterpretations.length > 0) { output += ` ${chalk.bold('Alternative Interpretations:')}\n`; claim.alternativeInterpretations.forEach((alt, j) => { output += ` ${chalk.bold(`${j+1}.`)} ${alt}\n`; }); } }); } // Reasoning Steps if (data.reasoningSteps && data.reasoningSteps.length > 0) { output += `\n${chalk.bold.yellow('Reasoning Steps:')}\n`; data.reasoningSteps.forEach((step, i) => { output += `${chalk.bold(`Step ${i+1}:`)} ${step.step}\n`; output += ` ${chalk.bold('Logical Validity:')} ${(step.logicalValidity * 100).toFixed(1)}%\n`; output += ` ${chalk.bold('Inference Strength:')} ${(step.inferenceStrength * 100).toFixed(1)}%\n`; if (step.assumptions.length > 0) { output += ` ${chalk.bold('Assumptions:')}\n`; step.assumptions.forEach((assumption, j) => { output += ` ${chalk.bold(`${j+1}.`)} ${assumption}\n`; }); } if (step.potentialBiases.length > 0) { output += ` ${chalk.bold('Potential Biases:')}\n`; step.potentialBiases.forEach((bias, j) => { output += ` ${chalk.bold(`${j+1}.`)} ${bias}\n`; }); } }); } // Uncertainty Areas if (uncertaintyAreas.length > 0) { output += `\n${chalk.bold.red('Uncertainty Areas:')}\n`; uncertaintyAreas.forEach((area, i) => { output += `${chalk.bold(`${i+1}.`)} ${area}\n`; }); } // Recommended Approach output += `\n${chalk.bold.cyan('Recommended Approach:')}\n${recommendedApproach}\n`; // Next Steps if (data.nextAssessmentNeeded) { output += `\n${chalk.green('Further assessment needed.')}\n`; if (data.suggestedAssessments && data.suggestedAssessments.length > 0) { output += `${chalk.bold('Suggested Assessments:')} ${data.suggestedAssessments.join(', ')}\n`; } } else { output += `\n${chalk.cyan('Assessment complete.')}\n`; } return output; }
- src/models/interfaces.ts:211-230 (schema)TypeScript interface defining the structure of MetacognitiveMonitoringData, used for type safety and validation.export interface MetacognitiveMonitoringData { task: string; stage: | "knowledge-assessment" | "planning" | "execution" | "monitoring" | "evaluation" | "reflection"; knowledgeAssessment?: KnowledgeAssessment; claims?: ClaimAssessment[]; reasoningSteps?: ReasoningAssessment[]; overallConfidence: number; uncertaintyAreas: string[]; recommendedApproach: string; monitoringId: string; iteration: number; suggestedAssessments?: ("knowledge" | "claim" | "reasoning" | "overall")[]; nextAssessmentNeeded: boolean; }
- src/index.ts:1123-1136 (registration)Registration in the CallToolRequestHandler switch statement that routes calls to the metacognitiveMonitoringServer.processMetacognitiveMonitoring method.case "metacognitivemonitoring": { const result = metacognitiveMonitoringServer.processMetacognitiveMonitoring( request.params.arguments ); return { content: [ { type: "text", text: JSON.stringify(result, null, 2), }, ], }; }
- src/index.ts:1005-1005 (registration)Tool registration in server capabilities.tools dictionary.metacognitivemonitoring: METACOGNITIVE_MONITORING_TOOL,
- src/index.ts:532-687 (schema)MCP Tool definition including name, description, and detailed inputSchema for JSON validation.const METACOGNITIVE_MONITORING_TOOL: Tool = { name: "metacognitivemonitoring", description: `A detailed tool for systematic self-monitoring of knowledge and reasoning quality. This tool helps models track knowledge boundaries, claim certainty, and reasoning biases. It provides a framework for metacognitive assessment across various domains and reasoning tasks.`, inputSchema: { type: "object", properties: { task: { type: "string" }, stage: { type: "string", enum: [ "knowledge-assessment", "planning", "execution", "monitoring", "evaluation", "reflection", ], }, knowledgeAssessment: { type: "object", properties: { domain: { type: "string" }, knowledgeLevel: { type: "string", enum: [ "expert", "proficient", "familiar", "basic", "minimal", "none", ], }, confidenceScore: { type: "number", minimum: 0, maximum: 1 }, supportingEvidence: { type: "string" }, knownLimitations: { type: "array", items: { type: "string" }, }, relevantTrainingCutoff: { type: "string" }, }, required: [ "domain", "knowledgeLevel", "confidenceScore", "supportingEvidence", "knownLimitations", ], }, claims: { type: "array", items: { type: "object", properties: { claim: { type: "string" }, status: { type: "string", enum: [ "fact", "inference", "speculation", "uncertain", ], }, confidenceScore: { type: "number", minimum: 0, maximum: 1, }, evidenceBasis: { type: "string" }, falsifiabilityCriteria: { type: "string" }, alternativeInterpretations: { type: "array", items: { type: "string" }, }, }, required: [ "claim", "status", "confidenceScore", "evidenceBasis", ], }, }, reasoningSteps: { type: "array", items: { type: "object", properties: { step: { type: "string" }, potentialBiases: { type: "array", items: { type: "string" }, }, assumptions: { type: "array", items: { type: "string" }, }, logicalValidity: { type: "number", minimum: 0, maximum: 1, }, inferenceStrength: { type: "number", minimum: 0, maximum: 1, }, }, required: [ "step", "potentialBiases", "assumptions", "logicalValidity", "inferenceStrength", ], }, }, overallConfidence: { type: "number", minimum: 0, maximum: 1 }, uncertaintyAreas: { type: "array", items: { type: "string" } }, recommendedApproach: { type: "string" }, monitoringId: { type: "string", description: "Unique identifier for this monitoring session", }, iteration: { type: "number", minimum: 0, description: "Current iteration of the monitoring process", }, suggestedAssessments: { type: "array", items: { type: "string", enum: ["knowledge", "claim", "reasoning", "overall"], }, }, nextAssessmentNeeded: { type: "boolean", description: "Whether further assessment is needed", }, }, required: [ "task", "stage", "overallConfidence", "uncertaintyAreas", "recommendedApproach", "monitoringId", "iteration", "nextAssessmentNeeded", ], }, };