Skip to main content
Glama

Clear Thought Server

metacognitiveMonitoringServer.ts5.83 kB
import { MetacognitiveMonitoringData } from '../models/interfaces.js'; import chalk from 'chalk'; export class MetacognitiveMonitoringServer { private validateInputData(input: unknown): MetacognitiveMonitoringData { const data = input as MetacognitiveMonitoringData; if (!data.task || !data.stage || !data.monitoringId) { throw new Error("Invalid input for MetacognitiveMonitoring: Missing required fields."); } if (typeof data.overallConfidence !== 'number' || data.overallConfidence < 0 || data.overallConfidence > 1) { throw new Error("Invalid overallConfidence value for MetacognitiveMonitoringData."); } if (typeof data.iteration !== 'number' || data.iteration < 0) { throw new Error("Invalid iteration value for MetacognitiveMonitoringData."); } if (typeof data.nextAssessmentNeeded !== 'boolean') { throw new Error("Invalid nextAssessmentNeeded value for MetacognitiveMonitoringData."); } return data; } private formatOutput(data: MetacognitiveMonitoringData): string { const { task, stage, overallConfidence, uncertaintyAreas, recommendedApproach, iteration } = data; let output = `\n${chalk.bold.blue('Metacognitive Monitoring')}\n`; output += `${chalk.bold.green('Task:')} ${task}\n`; output += `${chalk.bold.yellow('Stage:')} ${stage} (Iteration: ${iteration})\n`; output += `${chalk.bold.magenta('Overall Confidence:')} ${(overallConfidence * 100).toFixed(1)}%\n`; // Knowledge Assessment if (data.knowledgeAssessment) { const ka = data.knowledgeAssessment; output += `\n${chalk.bold.cyan('Knowledge Assessment:')}\n`; output += `${chalk.bold('Domain:')} ${ka.domain}\n`; output += `${chalk.bold('Level:')} ${ka.knowledgeLevel} (${(ka.confidenceScore * 100).toFixed(1)}% confidence)\n`; output += `${chalk.bold('Evidence:')} ${ka.supportingEvidence}\n`; if (ka.knownLimitations.length > 0) { output += `${chalk.bold('Known Limitations:')}\n`; ka.knownLimitations.forEach((limitation, i) => { output += ` ${chalk.bold(`${i+1}.`)} ${limitation}\n`; }); } } // Claims if (data.claims && data.claims.length > 0) { output += `\n${chalk.bold.green('Claims:')}\n`; data.claims.forEach((claim, i) => { output += `${chalk.bold(`Claim ${i+1}:`)} ${claim.claim}\n`; output += ` ${chalk.bold('Status:')} ${claim.status} (${(claim.confidenceScore * 100).toFixed(1)}% confidence)\n`; output += ` ${chalk.bold('Evidence:')} ${claim.evidenceBasis}\n`; if (claim.alternativeInterpretations && claim.alternativeInterpretations.length > 0) { output += ` ${chalk.bold('Alternative Interpretations:')}\n`; claim.alternativeInterpretations.forEach((alt, j) => { output += ` ${chalk.bold(`${j+1}.`)} ${alt}\n`; }); } }); } // Reasoning Steps if (data.reasoningSteps && data.reasoningSteps.length > 0) { output += `\n${chalk.bold.yellow('Reasoning Steps:')}\n`; data.reasoningSteps.forEach((step, i) => { output += `${chalk.bold(`Step ${i+1}:`)} ${step.step}\n`; output += ` ${chalk.bold('Logical Validity:')} ${(step.logicalValidity * 100).toFixed(1)}%\n`; output += ` ${chalk.bold('Inference Strength:')} ${(step.inferenceStrength * 100).toFixed(1)}%\n`; if (step.assumptions.length > 0) { output += ` ${chalk.bold('Assumptions:')}\n`; step.assumptions.forEach((assumption, j) => { output += ` ${chalk.bold(`${j+1}.`)} ${assumption}\n`; }); } if (step.potentialBiases.length > 0) { output += ` ${chalk.bold('Potential Biases:')}\n`; step.potentialBiases.forEach((bias, j) => { output += ` ${chalk.bold(`${j+1}.`)} ${bias}\n`; }); } }); } // Uncertainty Areas if (uncertaintyAreas.length > 0) { output += `\n${chalk.bold.red('Uncertainty Areas:')}\n`; uncertaintyAreas.forEach((area, i) => { output += `${chalk.bold(`${i+1}.`)} ${area}\n`; }); } // Recommended Approach output += `\n${chalk.bold.cyan('Recommended Approach:')}\n${recommendedApproach}\n`; // Next Steps if (data.nextAssessmentNeeded) { output += `\n${chalk.green('Further assessment needed.')}\n`; if (data.suggestedAssessments && data.suggestedAssessments.length > 0) { output += `${chalk.bold('Suggested Assessments:')} ${data.suggestedAssessments.join(', ')}\n`; } } else { output += `\n${chalk.cyan('Assessment complete.')}\n`; } return output; } public processMetacognitiveMonitoring(input: unknown): { content: Array<{ type: string; text: string }>; isError?: boolean } { try { const validatedData = this.validateInputData(input); const formattedOutput = this.formatOutput(validatedData); console.error(formattedOutput); return { content: [{ type: "text", text: JSON.stringify({ task: validatedData.task, stage: validatedData.stage, monitoringId: validatedData.monitoringId, iteration: validatedData.iteration, overallConfidence: validatedData.overallConfidence, nextAssessmentNeeded: validatedData.nextAssessmentNeeded, status: 'success' }, null, 2) }] }; } catch (error) { return { content: [{ type: "text", text: JSON.stringify({ error: error instanceof Error ? error.message : String(error), status: 'failed' }, null, 2) }], isError: true }; } } }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ThinkFar/clear-thought-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server