Skip to main content
Glama

Teradata MCP Server

Official
by Teradata
README.md1.96 kB
# SQL Optimization Tools **Dependencies** - Access to **DBC.DBQLSqlTbl** and **DBC.DBQLOgTbl** - Embedding models and tokenizers available in the configured database --- **Tools:** - **sql_Execute_Full_Pipeline** Runs the complete SQL query clustering workflow end-to-end: - Query log extraction - Tokenization & embeddings - Vector store creation - KMeans clustering - Silhouette scoring - Cluster statistics generation - **sql_Analyze_Cluster_Stats** Analyzes pre-computed cluster statistics: - Sorts/ranks clusters by CPU, I/O, skew, steps, or silhouette score - Categorizes clusters (HIGH_CPU, HIGH_IO, HIGH_SKEW, NORMAL) - Returns performance metadata and summary statistics - **sql_Retrieve_Cluster_Queries** Retrieves raw SQL from selected clusters: - Ranks queries by CPU, I/O, skew, complexity, or response time - Categorizes queries using thresholds (CPU usage, skew levels) - Provides context (user, app, workload, metrics) for optimization analysis --- **Configuration** All settings are managed in **`sql_opt_config.yml`**. You can adjust: - Database and table locations - Model identifiers and embedding parameters - Clustering parameters (e.g., K, iterations, thresholds) - Performance thresholds for CPU, I/O, and skew categorization --- **Workflow** 1. Run **sql_Execute_Full_Pipeline** to generate clusters and statistics. 2. Use **sql_Analyze_Cluster_Stats** to identify problematic clusters. 3. Call **sql_Retrieve_Cluster_Queries** to inspect raw SQL and plan optimization actions. --- **Use Cases** - Identify query families consuming the most system resources - Detect skew/distribution issues - Prioritize DBA optimization efforts - Retrieve and analyze problematic queries for rewrites or indexing - Provide LLMs with structured cluster/query data for recommendations --- [Return to Main README](../../../../README.md)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Teradata/teradata-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server