Skip to main content
Glama

Teradata MCP Server

Official
by Teradata
README.md2.02 kB
# RAG Tools **RAG** tools: - rag_Execute_Workflow - executes complete RAG pipeline (config setup, query storage, embedding generation, and semantic search) **Configuration:** The RAG system is fully configurable through `rag_config.yml`. You can customize: - **Database locations** (query_db, model_db, vector_db) - **Table names** (query_table, vector_table, model_table, etc.) - **Model settings** (model_id, embedding dimensions) - **Vector store metadata fields** - **Embedding parameters** (vector length, column prefix, distance measure) - **Retrieval settings** (default chunk count, maximum limits) **Version Selection:** The RAG tool supports two implementations: - **BYOM (default)**: Uses ONNXEmbeddings for embedding generation - **IVSM**: Uses IVSM functions for embedding generation To switch between versions, edit `rag_config.yml`: ```yaml version: 'byom' # Options: 'byom' or 'ivsm' ``` **Vector Store Compatibility:** The system automatically adapts to your vector store schema. Configure your setup in `rag_config.yml`: ```yaml # Database Configuration databases: query_db: "your_db" vector_db: "your_vector_db" # Table Configuration tables: vector_table: "your_vector_store_table" # Model Configuration (adjust for different embedding models) model: model_id: "your-model-id" # RAG Retrieval Configuration retrieval: default_k: 10 # Default number of chunks to retrieve max_k: 50 # Maximum allowed chunks # Embedding Configuration (change for different model dimensions) embedding: vector_length: 384 # Change based on your model feature_columns: "[emb_0:emb_383]" # Adjust range accordingly # Vector Store Schema vector_store_schema: metadata_fields_in_vector_store: - "chunk_num" - "doc_name" # Add any other metadata columns from your vector store ``` The RAG tool supports two implementations that can be selected via configuration: - rag_guidelines - guidelines for llm for rag workflow. [Return to Main README](../../../../README.md)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Teradata/teradata-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server