Skip to main content
Glama

Teradata MCP Server

Official
by Teradata
evs_tools.py1.49 kB
import json import logging from teradatasql import TeradataConnection from teradata_mcp_server.tools.evs_connect import get_evs from teradata_mcp_server.tools.utils import create_response logger = logging.getLogger("teradata_mcp_server") #------------------ Do not make changes above ------------------# #================================================================ # Enterprise Vector Store tools #================================================================ def handle_evs_similarity_search( conn: TeradataConnection, question: str, top_k: int = 1, *args, **kwargs, ) -> str: """ Enterprise Vector Store similarity search Arguments: question - the query string to search for top_k - number of top results to return Returns: ResponseType: formatted response with query results + metadata """ logger.debug(f"EVS similarity_search: q='{question}', top_k={top_k}") vs = get_evs() try: results = vs.similarity_search( question=question, top_k=top_k, return_type="json", ) return create_response( results, metadata={ "tool_name": "evs_similarity_search", "question": question, "top_k": top_k, }, ) except Exception as e: logger.error(f"EVS similarity_search failed: {e}") return json.dumps({"status": "error", "message": str(e)})

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Teradata/teradata-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server