Skip to main content
Glama

Teradata MCP Server

Official
by Teradata
rag_config.yml1.49 kB
# RAG Configuration File # RAG Version Selection version: 'ivsm' # Options: 'byom' (ONNXEmbeddings) or 'ivsm' (IVSM functions) # Database Configuration databases: query_db: "demo_db" model_db: "demo_db" vector_db: "demo_db" # Table Configuration tables: query_table: "user_query" query_embedding_store: "user_query_embeddings" vector_table: "icici_fr_embeddings_store" model_table: "embeddings_models" tokenizer_table: "embeddings_tokenizers" # Model Configuration model: model_id: "bge-small-en-v1.5" # RAG Retrieval Configuration retrieval: default_k: 10 # Default number of chunks to retrieve max_k: 50 # Maximum allowed chunks # Vector Store Schema Configuration vector_store_schema: # Required fields (always present in every vector store) required_fields: - "txt" # Specify the metadata fields available in YOUR chunked/embedded vector store table # (These are the columns in your vector store table beyond 'txt' and the embedding columns) # Only list fields that actually exist in your vector store table metadata_fields_in_vector_store: - "chunk_num" # - "page_num" - "section_title" - "doc_name" # Add any other metadata columns from your vector store table here # Examples: "page_num", "chapter", "chunk_token_length", "author", etc. # Embedding Configuration embedding: vector_length: 384 vector_column_prefix: "emb_" distance_measure: "cosine" feature_columns: "[emb_0:emb_383]"

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Teradata/teradata-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server