Skip to main content
Glama

Teradata MCP Server

Official
by Teradata
README.md1.56 kB
# Simple Agent using mcp client framework (stdio version) This is a simple agent developed with the mcp client framework that can use LLM. A command line experience. ## Features - Command line chat interface - Access to all tools - Access to all prompts - Access to all resources ## Prerequisites - Installed teradata-mcp-server - LLM access - AWS - Account with Bedrock access - AWS CLI configured with appropriate credentials - Teradata MCP server and Teradata system. ## Installation 1. Install all client dependencies: With the server virtual environment activated, install the required packages: ```bash uv pip install -r examples/MCP_Client_Example/requirements.txt --force-reinstall ``` 2. Configure Client Credentials: Assumes you have set up the environment variables for your model. Alternatively you should add them to your .env file. ``` # When using AWS aws_role_switch=False aws_access_key_id= aws_secret_access_key= aws_session_token= aws_region= ``` 4. Modify server_config.json file - Modify the Path, so that the complete path to your server is defined - Modify the DATABASE_URI, so that your connection string to Teradata is valid <br><br> ## Usage 1. confirm the following is in .env file ``` MCP_TRANSPORT=stdio ``` 2. In a termial start the server. ``` uv run examples/MCP_Client_Example/mcp_chatbot.py ``` 3. list the prompts by typing /prompts ``` Query: /prompts ``` 4. running a prompt to describe a database ``` Query: /prompt base_databaseBusinessDesc database_name=demo_user ```

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Teradata/teradata-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server