# Simple Agent using mcp client framework (stdio version)
This is a simple agent developed with the mcp client framework that can use LLM.
A command line experience.
## Features
- Command line chat interface
- Access to all tools
- Access to all prompts
- Access to all resources
## Prerequisites
- Installed teradata-mcp-server
- LLM access
- AWS
- Account with Bedrock access
- AWS CLI configured with appropriate credentials
- Teradata MCP server and Teradata system.
## Installation
1. Install all client dependencies:
With the server virtual environment activated, install the required packages:
```bash
uv pip install -r examples/MCP_Client_Example/requirements.txt --force-reinstall
```
2. Configure Client Credentials:
Assumes you have set up the environment variables for your model. Alternatively you should add them to your .env file.
```
# When using AWS
aws_role_switch=False
aws_access_key_id=
aws_secret_access_key=
aws_session_token=
aws_region=
```
4. Modify server_config.json file
- Modify the Path, so that the complete path to your server is defined
- Modify the DATABASE_URI, so that your connection string to Teradata is valid
<br><br>
## Usage
1. confirm the following is in .env file
```
MCP_TRANSPORT=stdio
```
2. In a termial start the server.
```
uv run examples/MCP_Client_Example/mcp_chatbot.py
```
3. list the prompts by typing /prompts
```
Query: /prompts
```
4. running a prompt to describe a database
```
Query: /prompt base_databaseBusinessDesc database_name=demo_user
```
MCP directory API
We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/Teradata/teradata-mcp-server'
If you have feedback or need assistance with the MCP directory API, please join our Discord server