Skip to main content
Glama

Teradata MCP Server

Official
by Teradata
agent.py3.38 kB
# To run this code type the following command in the terminal: # adk web # # The followin video is a good overview of ADK and how to use it: # https://www.youtube.com/watch?v=P4VFL9nIaIA import asyncio import os import nest_asyncio from dotenv import load_dotenv from google.adk.agents.llm_agent import LlmAgent from google.adk.models.lite_llm import LiteLlm from google.adk.tools.mcp_tool.mcp_toolset import ( MCPToolset, SseConnectionParams, StdioConnectionParams, StdioServerParameters, StreamableHTTPConnectionParams, ) load_dotenv() nest_asyncio.apply() async def create_agent(): """Defines the transport mode to be used.""" if os.getenv("MCP_TRANSPORT") == 'stdio': # .env file needs to have MCP_TRANSPORT=stdio connection_params=StdioConnectionParams( server_params=StdioServerParameters( command='uv', args=[ "--directory", "/Users/Daniel.Tehan/Code/MCP/teradata-mcp-server", "run", "teradata-mcp-server" ], ), timeout=30 # Timeout in seconds for establishing the connection to the MCP std ) elif os.getenv("MCP_TRANSPORT") == 'sse': # .env file needs to have MCP_TRANSPORT=sse connection_params=SseConnectionParams( url = f'http://{os.getenv("MCP_HOST", "localhost")}:{os.getenv("MCP_PORT", 8001)}/sse', # URL of the MCP server timeout=20, # Timeout in seconds for establishing the connection to the MCP SSE server ) elif os.getenv("MCP_TRANSPORT") == 'streamable-http': # .env file needs to have MCP_TRANSPORT=streamable-http connection_params=StreamableHTTPConnectionParams( url = f'http://{os.getenv("MCP_HOST", "localhost")}:{os.getenv("MCP_PORT", 8001)}/mcp/', # URL of the MCP server timeout=20, # Timeout in seconds for establishing the connection to the MCP Streamable HTTP server ) else: raise ValueError("MCP_TRANSPORT environment variable must be set to 'stdio', 'sse', or 'streamable-http'.") toolset = MCPToolset(connection_params=connection_params) """Defines the model to be used.""" # Using Bedrock model model=LiteLlm( model='bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0', aws_access_key_id=os.getenv("aws_access_key_id"), aws_secret_access_key=os.getenv("aws_secret_access_key"), region_name=os.getenv("aws_region", "us-west-2") ) # # Using Google model # model='gemini-2.0-flash' # # Using Azure model # model=LiteLlm( # model='azure/gpt-4o-mini', # api_key=os.getenv('azure_api_key'), # api_base=os.getenv('azure_gpt-4o-mini'), # ) # # Using Ollama model, you need to install Ollama and run the server # # https://ollama.com/docs/installation # model=LiteLlm( # model='ollama/llama4:latest', # api_base=os.getenv('ollama_api_base', 'http://localhost:11434'), # ) agent = LlmAgent( model=model, name='Simple_Agent', instruction='Help user with Teradata tasks', tools=[toolset] ) return agent # Create the agent asynchronously root_agent = asyncio.run(create_agent())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Teradata/teradata-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server