Skip to main content
Glama
Teradata

Teradata MCP Server

Official
by Teradata
analytic_function_test_cases.json41.2 kB
{ "scripts": { "pre_test": { "command": "python tests/scripts/analytic_functions_setup.py --action setup", "description": "Setup Analytic functions test environment" }, "post_test": { "command": "python tests/scripts/analytic_functions_setup.py --action cleanup", "description": "Teardown Analytic functions test environment" } }, "test_cases": { "tdml_ANOVA": [ { "name": "anova_test_case_1", "parameters": { "data": "insect_sprays", "group_columns": ["groupC", "groupD"], "alpha": 0.06 } } ], "tdml_Attribution": [ { "name": "attribution_test_case_1", "parameters": { "data": "attribution_sample_table1", "data_partition_column": "user_id", "data_order_column": "time_stamp", "data_optional": "attribution_sample_table2", "data_optional_partition_column": "user_id", "data_optional_order_column": "time_stamp", "event_column": "event", "conversion_data": "conversion_event_table", "optional_data": "optional_event_table", "timestamp_column": "time_stamp", "window_size": "rows:10&seconds:20", "model1_type": "model1_table", "model2_type": "model2_table" } } ], "tdml_Antiselect": [ { "name": "antiselect_test_case_1", "parameters": { "data": "sales", "exclude": ["Jan", "Feb"] } } ], "tdml_Apriori": [ { "name": "apriori_test_case_1", "parameters": { "data": "trans_dense", "target_column": "item", "partition_columns": ["location"], "max_len": 2, "patterns_or_rules": "rules", "support": 0.01 } } ], "tdml_BincodeFit": [ { "name": "bincodefit_test_case_1", "parameters": { "data": "titanic", "target_columns": "age", "nbins": 2, "label_prefix": "Age Group", "method_type": "EQUAL-WIDTH" } } ], "tdml_BincodeTransform": [ { "name": "bincodetransform_test_case_1", "parameters": { "data": "titanic", "object": "bin_fit_op", "accumulate": "passenger" } } ], "tdml_CFilter": [ { "name": "cfilter_test_case_1", "parameters": { "data": "grocery_transaction", "target_column": "item", "transaction_id_columns": "tranid", "max_distinct_items": 100 } } ], "tdml_CategoricalSummary": [ { "name": "categoricalsummary_test_case_1", "parameters": { "data": "titanic", "target_columns": "sex" } } ], "tdml_ChiSq": [ { "name": "chisq_test_case_1", "parameters": { "data": "chi_sq", "alpha": 0.5 } } ], "tdml_ClassificationEvaluator": [ { "name": "classificationevaluator_test_case_1", "parameters": { "data": "CVTable", "observation_column": "survived", "prediction_column": "pcol", "labels": ["0","1"] } } ], "tdml_ColumnSummary": [ { "name": "columnsummary_test_case_1", "parameters": { "data": "titanic", "target_columns": ["age","pClass"] } } ], "tdml_ColumnTransformer": [ { "name": "columntransformer_test_case_1", "parameters": { "fillrowid_column_name": "output_value", "input_data": "titanic", "bincode_fit_data": "bin_fit_op", "onehotencoding_fit_data": "one_hot_op" } } ], "tdml_ConvertTo": [ { "name": "convertto_test_case_1", "parameters": { "data": "titanic", "target_columns": ["fare"], "target_datatype": "integer", "accumulate": ["passenger", "name", "ticket"], "output_table_name": "convert_to_output_tbl" } } ], "tdml_DecisionForest": [ { "name": "decisionforest_test_case_1", "parameters": { "data": "boston", "formula": "medv ~ crim+zn+indus+chas+nox+rm+age+dis+rad+tax+ptratio+black+lstat", "max_depth": 12, "num_trees": 4, "min_node_size": 1, "mtry": 3, "mtry_seed": 1, "seed": 1, "tree_type": "REGRESSION" } } ], "tdml_FTest": [ { "name": "ftest_test_case_1", "parameters": { "data": "titanic", "second_sample_column": "parch", "second_sample_variance": 8, "df2": 2 } } ], "tdml_FillRowId": [ { "name": "fillrowid_test_case_1", "parameters": { "data": "titanic", "row_id_column": "PassengerId" } } ], "tdml_Fit": [ { "name": "fit_test_case_1", "parameters": { "data": "iris_input", "object": "transformation_table" } } ], "tdml_TDGLMPredict": [ { "name": "glmpredict_test_case_1", "parameters": { "id_column": "id", "newdata": "boston_transformed_data", "object": "glm_op", "accumulate": "medv" } } ], "tdml_GetFutileColumns": [ { "name": "getfutilecolumns_test_case_1", "parameters": { "data": "titanic", "object": "cat_summary_op", "category_summary_column": "ColumnName", "threshold_value": 0.7 } } ], "tdml_GetRowsWithMissingValues": [ { "name": "getrowswithmissingvalues_test_case_1", "parameters": { "data": "titanic", "target_columns": ["name", "sex", "age", "passenger"], "accumulate": ["survived","pclass"] } } ], "tdml_GetRowsWithoutMissingValues": [ { "name": "getrowswithoutmissingvalues_test_case_1", "parameters": { "data": "titanic", "target_columns": ["name", "sex", "age", "passenger"], "accumulate": ["survived","pclass"] } } ], "tdml_GLM": [ { "name": "GLM_test_case_1", "parameters": { "data": "housing_train_segment", "formula": "price ~ bedrooms+bathrms+stories+driveway+recroom+fullbase+gashw+airco", "family": "GAUSSIAN", "batch_size": 10, "iter_max": 1000, "data_partition_column": "partition_id" } } ], "tdml_GLMPerSegment": [ { "name": "glmpersegment_test_case_1", "parameters": { "data": "gaussian_housing_train", "data_partition_column": "stories", "formula": "price ~ garagepl+lotsize+bedrooms+bathrms", "family": "Gaussian", "iter_max": 1000, "batch_size": 9 } } ], "tdml_GLMPredictPerSegment": [ { "name": "glmpredictpersegment_test_case_1", "parameters": { "newdata": "gaussian_housing_train", "newdata_partition_column": "stories", "object": "glm_per_segment_op", "object_partition_column": "stories", "id_column": "sn" } } ], "tdml_Histogram": [ { "name": "histogram_test_case_1", "parameters": { "data": "titanic", "target_columns": "age", "method_type": "STURGES" } } ], "tdml_KMeans": [ { "name": "kmeans_test_case_1", "parameters": { "id_column":"id", "data": "computers_train1", "target_columns": ["price", "speed"], "num_clusters": 3 } } ], "tdml_KMeansPredict": [ { "name": "kmeanspredict_test_case_1", "parameters": { "data": "computers_train1", "object": "kmeans_op" } } ], "tdml_KNN": [ { "name": "knn_test_case_1", "parameters": { "train_data": "knn_OHE_op", "test_data": "computers_test1", "k": 50, "response_column": "computer_category_special", "id_column": "id", "output_prob": false, "input_columns": [ "price", "speed", "hd", "ram", "screen" ], "voting_weight": 1.0, "emit_distances": false } } ], "tdml_MovingAverage": [ { "name": "movingaverage_test_case_1", "parameters": { "data": "ibm_stock", "include_first": false, "alpha": 0.1, "start_rows": 2, "window_size": 10, "mavgtype": "C" } } ], "tdml_NERExtractor": [ { "name": "nerextractor_test_case_1", "parameters": { "data": "ner_input_eng", "user_defined_data": "ner_dict", "rules_data": "ner_rule", "text_column": ["txt"], "input_language": "en", "show_context": 3, "accumulate": ["id"] } } ], "tdml_NGramSplitter": [ { "name": "ngramsplitter_test_case_1", "parameters": { "data": "paragraphs_input", "text_column": "paratext", "n_gram_column": "ngram", "num_grams_column": "n", "frequency_column": "frequency", "total_count_column": "totalcnt", "grams": "4-6", "overlapping": true, "to_lower_case": true, "delimiter": " ", "punctuation": "`~#^&*()-", "reset": ".,?!", "total_gram_count": false } } ], "tdml_NPath": [ { "name": "npath_test_case_1", "parameters": { "data1": "impressions", "data1_partition_column": "userid", "data1_order_column": "ts", "data2": "clicks2", "data2_partition_column": "userid", "data2_order_column": "ts", "data3": "tv_spots", "data3_partition_column": "ts", "data3_order_column": "ts", "result": ["COUNT(* of imp) as imp_cnt", "COUNT(* of tv_imp) as tv_imp_cnt"], "mode": "nonoverlapping", "pattern": "(imp|tv_imp)*.click", "symbols": ["true as imp", "true as click", "true as tv_imp"] } } ], "tdml_NaiveBayesTextClassifierPredict": [ { "name": "naivebayestextclassifierpredict_test_case_1", "parameters": { "newdata": "complaints_tokens_test", "object": "nbt_op", "input_token_column": "token", "doc_id_columns": "doc_id", "model_type": "Bernoulli", "model_token_column": "token", "model_category_column": "category", "model_prob_column": "prob" } } ], "tdml_NaiveBayesTextClassifierTrainer": [ { "name": "naivebayestextclassifiertrainer_test_case_1", "parameters": { "data": "token_table", "token_column": "token", "doc_id_column": "doc_id", "doc_category_column": "category", "model_type": "Bernoulli" } } ], "tdml_NonLinearCombineFit": [ { "name": "nonlinearcombinefit_test_case_1", "parameters": { "data": "titanic", "target_columns": [ "sibsp", "parch", "fare" ], "formula": "Y=(X0+X1+1)*X2", "result_column": "total_cost" } } ], "tdml_NonLinearCombineTransform": [ { "name": "nonlinearcombinetransform_test_case_1", "parameters": { "data": "titanic", "object": "non_linear_fit_op", "accumulate": "passenger" } } ], "tdml_NumApply": [ { "name": "numapply_test_case_1", "parameters": { "data": "numerics", "target_columns": "integer_col", "apply_method": "log", "in_place": true } } ], "tdml_OneClassSVM": [ { "name": "oneclasssvm_test_case_1", "parameters": { "data": "diabetes", "input_columns": ["age", "sex", "bmi", "map1", "tc", "ldl", "hdl", "tch", "ltg", "glu", "y"], "local_sgd_iterations": 537, "batch_size": 1, "learning_rate": "CONSTANT", "initial_eta": 0.01, "lambda1": 0.1, "alpha": 0.0, "momentum": 0.0, "iter_max": 1 } } ], "tdml_OneClassSVMPredict": [ { "name": "oneclasssvmpredict_test_case_1", "parameters": { "newdata": "scale_transform_op", "object": "one_class_svm_op", "id_column": "id" } } ], "tdml_OneHotEncodingFit": [ { "name": "onehotencodingfit_test_case_1", "parameters": { "data": "titanic", "is_input_dense": true, "target_column": "sex", "categorical_values": ["male", "female"], "other_column": "other" } } ], "tdml_OneHotEncodingTransform": [ { "name": "onehotencodingtransform_test_case_1", "parameters": { "data": "titanic", "object": "one_hot_fit_op", "is_input_dense": true } } ], "tdml_OrdinalEncodingFit": [ { "name": "ordinalencodingfit_test_case_1", "parameters": { "target_column": "sex", "data": "titanic" } } ], "tdml_OrdinalEncodingTransform": [ { "name": "ordinalencodingtransform_test_case_1", "parameters": { "data": "titanic", "object": "ordinal_fit_op", "accumulate": "age" } } ], "tdml_OutlierFilterFit": [ { "name": "outlierfilterfit_test_case_1", "parameters": { "data": "titanic", "target_columns": "fare", "lower_percentile": 0.1, "upper_percentile": 0.9, "outlier_method": "PERCENTILE", "replacement_value": "MEDIAN", "percentile_method": "PERCENTILECONT" } } ], "tdml_OutlierFilterTransform": [ { "name": "outlierfiltertransform_test_case_1", "parameters": { "data": "titanic", "object": "outlier_fit_op" } } ], "tdml_Pack": [ { "name": "pack_test_case_1", "parameters": { "data": "ville_temperature", "input_columns": ["city", "state", "period", "temp_f"], "output_column": "packed_data", "delimiter": ",", "accumulate": "city", "include_column_name": true } } ], "tdml_PolynomialFeaturesFit": [ { "name": "polynomialfeaturesfit_test_case_1", "parameters": { "data": "numerics", "target_columns": [ "integer_col", "smallint_col" ], "degree": 2 } } ], "tdml_PolynomialFeaturesTransform": [ { "name": "polynomialfeaturestransform_test_case_1", "parameters": { "data": "numerics", "object": "poly_fit_op" } } ], "tdml_Pivoting": [ { "name": "pivoting_test_case_1", "parameters": { "data": "titanic_dataset_unpivoted", "partition_columns": "passenger", "target_columns": "AttributeValue", "accumulate": "survived", "rows_per_partition": 2, "data_partition_column": "passenger", "data_order_column": "AttributeName" } } ], "tdml_QQNorm": [ { "name": "qqnorm_test_case_1", "parameters": { "data": "rank_table", "target_columns": [ "age", "fare" ], "rank_columns": [ "rank_age", "rank_fare" ] } } ], "tdml_ROC": [ { "name": "roc_test_case_1", "parameters": { "probability_column": "probability", "observation_column": "observation", "model_id_column": "model_id", "positive_class": "1", "data": "roc_input" } } ], "tdml_RandomProjectionFit": [ { "name": "randomprojectionfit_test_case_1", "parameters": { "data": "stock_movement", "target_columns": "1:", "epsilon": 0.9, "num_components": 343 } } ], "tdml_RandomProjectionMinComponents": [ { "name": "randomprojectionmincomponents_test_case_1", "parameters": { "data": "stock_movement", "target_columns": "1:" } } ], "tdml_RandomProjectionTransform": [ { "name": "randomprojectiontransform_test_case_1", "parameters": { "data": "stock_movement", "object": "random_proj_fit_op" } } ], "tdml_RegressionEvaluator": [ { "name": "regressionevaluator_test_case_1", "parameters": { "data": "titanic", "observation_column": "fare", "prediction_column": "passenger", "freedom_degrees": [ 1, 2 ], "independent_features_num": 2, "metrics": [ "RMSE", "R2", "FSTAT" ] } } ], "tdml_RoundColumns": [ { "name": "roundcolumns_test_case_1", "parameters": { "data": "titanic", "target_columns": "fare", "precision_digit": 2, "accumulate": [ "pclass", "sex" ] } } ], "tdml_RowNormalizeFit": [ { "name": "rownormalizefit_test_case_1", "parameters": { "data": "numerics", "target_columns": [ "integer_col", "smallint_col" ], "approach": "INDEX", "base_column": "integer_col", "base_value": 100.0 } } ], "tdml_RowNormalizeTransform": [ { "name": "rownormalizetransform_test_case_1", "parameters": { "data": "numerics", "object": "row_normalize_fit_op", "accumulate": "id_col" } } ], "tdml_SMOTE": [ { "name": "smote_test_case_1", "parameters": { "data": "iris_test", "n_neighbors": 5, "id_column": "id", "minority_class": "3", "response_column": "species", "input_columns": [ "sepal_length", "sepal_width", "petal_length", "petal_width" ], "oversampling_factor": 2, "sampling_strategy": "smote", "seed": 10 } } ], "tdml_SVM": [ { "name": "svm_test_case_1", "parameters": { "data": "scale_transform_op2", "formula": "MedHouseVal ~ MedInc+HouseAge+AveRooms+AveBedrms+Population+AveOccup+Latitude+Longitude", "model_type": "Regression" } } ], "tdml_SVMPredict": [ { "name": "svmpredict_test_case_1", "parameters": { "newdata": "scale_transform_op2", "object": "svm_op", "id_column": "id", "accumulate": "MedHouseVal", "model_type": "Regression" } } ], "tdml_ScaleFit": [ { "name": "scalefit_test_case_1", "parameters": { "data": "scale_housing", "target_columns": "lotsize", "scale_method": "MEAN", "miss_value": "KEEP", "global_scale": false, "multiplier": "1", "intercept": "0" } } ], "tdml_ScaleTransform": [ { "name": "scaletransform_test_case_1", "parameters": { "data": "scale_housing", "object": "scale_fit_op", "accumulate": "price" } } ], "tdml_SentimentExtractor": [ { "name": "sentimentextractor_test_case_1", "parameters": { "text_column": "review", "data": "sentiment_extract_input" } } ], "tdml_Sessionize": [ { "name": "sessionize_test_case_1", "parameters": { "data": "sessionize_table", "data_partition_column": "partition_id", "data_order_column": "clicktime", "time_column": "clicktime", "time_out": 60.0, "click_lag": 0.2 } } ], "tdml_Shap": [ { "name": "shap_test_case_1", "parameters": { "data": "iris_input", "object": "xgboost_op", "id_column": "id", "training_function": "TD_XGBOOST", "model_type": "Classification", "input_columns": [ "sepal_length", "sepal_width", "petal_length", "petal_width" ], "detailed": true } } ], "tdml_Silhouette": [ { "name": "silhouette_test_case_1", "parameters": { "accumulate": [ "feature" ], "id_column": "row_id", "cluster_id_column": "userid", "target_columns": "\"value\"", "output_type": "SAMPLE_SCORES", "data": "mobile_data" } } ], "tdml_SimpleImputeFit": [ { "name": "simpleimputefit_test_case_1", "parameters": { "data": "titanic", "stats_columns": "age", "literals_columns": "cabin", "stats": "median", "literals": "General" } } ], "tdml_SimpleImputeTransform": [ { "name": "simpleimputetransform_test_case_1", "parameters": { "data": "titanic", "object": "simple_impute_fit_op" } } ], "tdml_StrApply": [ { "name": "strapply_test_case_1", "parameters": { "data": "titanic", "target_columns": "name", "string_operation": "TOUPPER", "in_place": false } } ], "tdml_StringSimilarity": [ { "name": "stringsimilarity_test_case_1", "parameters": { "data": "strsimilarity_input", "comparison_columns": [ "jaro (src_text1, tar_text) AS jaro1_sim", "LD (src_text1, tar_text) AS ld1_sim", "n_gram (src_text1, tar_text, 2) AS ngram1_sim", "jaro_winkler (src_text1, tar_text, 0.1) AS jw1_sim" ], "case_sensitive": true, "accumulate": [ "id", "src_text1", "tar_text" ] } } ], "tdml_TDDecisionForestPredict": [ { "name": "tddecisionforestpredict_test_case_1", "parameters": { "newdata": "boston", "object": "decision_forest_op", "id_column": "id" } } ], "tdml_TDNaiveBayesPredict": [ { "name": "tdnaivebayespredict_test_case_1", "parameters": { "data": "housing_test", "object": "naive_bayes_op", "id_column": "sn", "numeric_inputs": [ "price", "lotsize", "bedrooms", "bathrms", "stories", "garagepl" ], "categorical_inputs": [ "driveway", "recroom", "fullbase", "gashw", "airco", "prefarea" ], "responses": [ "Classic", "Eclectic", "bungalow" ], "accumulate": "homestyle", "output_prob": true } } ], "tdml_TFIDF": [ { "name": "tfidf_test_case_1", "parameters": { "data": "token_table", "doc_id_column": "doc_id", "token_column": "token", "tf_normalization": "LOG", "idf_normalization": "SMOOTH", "regularization": "L2", "accumulate": [ "category" ] } } ], "tdml_TargetEncodingFit": [ { "name": "targetencodingfit_test_case_1", "parameters": { "data": "titanic", "category_data": "category_data_op", "encoder_method": "CBM_BETA", "target_columns": [ "sex", "embarked" ], "response_column": "survived", "default_values": [ -1, -2 ] } } ], "tdml_TargetEncodingTransform": [ { "name": "targetencodingtransform_test_case_1", "parameters": { "data":"titanic", "object": "target_encoding_fit_op", "accumulate": "passenger" } } ], "tdml_TextMorph": [ { "name": "textmorph_test_case_1", "parameters": { "data": "words_input", "word_column": "word", "pos": [ "noun", "verb" ], "single_output": true, "accumulate": [ "id" ] } } ], "tdml_TextParser": [ { "name": "textparser_test_case_1", "parameters": { "data": "complaints", "text_column": "text_data", "object": "stop_words", "remove_stopwords": true, "accumulate": "doc_id" } } ], "tdml_TrainTestSplit": [ { "name": "traintestsplit_test_case_1", "parameters": { "data": "titanic", "id_column": "passenger", "train_size": 0.8, "test_size": 0.2, "seed": 42 } } ], "tdml_Transform": [ { "name": "transform_test_case_1", "parameters": { "data": "iris_input", "object": "fit_op", "id_columns": [ "species", "id" ] } } ], "tdml_UnivariateStatistics": [ { "name": "univariatestatistics_test_case_1", "parameters": { "newdata": "titanic", "target_columns": "fare", "partition_columns": [ "sex", "age" ], "stats": "ALL", "centiles": [ 1, 5, 10, 25, 50, 75, 90, 95, 99 ], "trim_percentile": 20 } } ], "tdml_Unpack": [ { "name": "unpack_test_case_1", "parameters": { "data": "ville_tempdata", "input_column": "packed_temp_data", "output_columns": [ "city", "state", "temp_f" ], "output_datatypes": [ "varchar", "varchar", "real" ], "delimiter": ",", "regex": "(.*)", "regex_set": 1, "exception": true } } ], "tdml_Unpivoting": [ { "name": "unpivoting_test_case_1", "parameters": { "data": "unpivot_input", "id_column": "sn", "target_columns": "city", "accumulate": "week", "include_nulls": true } } ], "tdml_VectorDistance": [ { "name": "vectordistance_test_case_1", "parameters": { "target_id_column": "userid", "target_feature_columns": [ "CallDuration", "DataCounter", "SMS" ], "ref_id_column": "userid", "ref_feature_columns": [ "CallDuration", "DataCounter", "SMS" ], "distance_measure": [ "Cosine", "Euclidean", "Manhattan" ], "topk": 2, "target_data": "target_mobile_data_dense", "reference_data": "ref_mobile_data_dense" } } ], "tdml_WhichMax": [ { "name": "whichmax_test_case_1", "parameters": { "data": "titanic", "target_column": "age" } } ], "tdml_WhichMin": [ { "name": "whichmin_test_case_1", "parameters": { "data": "titanic", "target_column": "age" } } ], "tdml_WordEmbeddings": [ { "name": "wordembeddings_test_case_1", "parameters": { "data": "word_embed_input_table1", "model": "word_embed_model", "id_column": "doc_id", "model_text_column": "token", "model_vector_columns": [ "v1", "v2", "v3", "v4" ], "primary_column": "doc1", "operation": "token-embedding" } } ], "tdml_XGBoost": [ { "name": "xgboost_test_case_1", "parameters": { "data": "titanic", "formula": "fare ~ age + survived + pclass", "max_depth": 3, "lambda1": 1000.0, "model_type": "Regression", "seed": -1, "shrinkage_factor": 0.1, "iter_num": 2 } } ], "tdml_XGBoostPredict": [ { "name": "xgboostpredict_test_case_1", "parameters": { "newdata": "titanic", "object": "xgboost_op2", "id_column": "passenger" } } ], "tdml_ZTest": [ { "name": "ztest_test_case_1", "parameters": { "data": "titanic", "first_sample_column": "age", "first_sample_variance": 5 } } ] } }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Teradata/teradata-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server