# Teradata MCP server in Flowise
> **📍 Navigation:** [Documentation Home](../README.md) | [Server Guide](../README.md#-server-guide) | [Getting started](../server_guide/GETTING_STARTED.md) | [Architecture](../server_guide/ARCHITECTURE.md) | [Installation](../server_guide/INSTALLATION.md) | [Configuration](../server_guide/CONFIGURATION.md) | [Security](../server_guide/SECURITY.md) | [Customization](../server_guide/CUSTOMIZING.md) | [Client Guide](CLIENT_GUIDE.md)
1. **Make sure you have Teradata database access.** (the most convenient way: Go to https://clearscape.teradata.com create account and login, start the environment and click on Run Demo)
2. **Build Teradata mcp server container image** from https://github.com/Teradata/teradata-mcp-server, run below lines in cmd terminal.
```
git clone https://github.com/Teradata/teradata-mcp-server.git
cd teradata-mcp-server
# build container from Source code
docker build --build-arg ENABLE_FS_MODULE=true \
--build-arg ENABLE_TDML_MODULE=true \
--build-arg ENABLE_TDVS_MODULE=true \
-t teradata-mcp-server:latest .
```
3. **Build Flowise Container Image** from https://github.com/FlowiseAI/Flowise, run below lines in cmd terminal.
```
git clone https://github.com/FlowiseAI/Flowise.git
cd Flowise
docker build --no-cache -t flowise:latest .
```
4. **Create Common .env file** for teradata-mcp-server and flowise container,
```
mkdir ~/td_ai_stack
cd ~/td_ai_stack
vi .env
```
```
# ----------- MCP server and Database Env variables ------------#
DATABASE_URI=teradata://username:password@host:1025/databasename
LOGMECH=TD2 #TD2 or LDAP
TD_POOL_SIZE=5
TD_MAX_OVERFLOW=10
TDPOOL_TIMEOUT=30
PROFILE=dataScientist
DATABASE_HOST=IP_OF_DB_NODE
MCP_TRANSPORT=streamable-http #stdio, sse, streamable-http
MCP_HOST=0.0.0.0
MCP_PORT=8001
MCP_PATH=/mcp/
# ----- Enterprise Vector Store ----------
TD_BASE_URL=https://host/api/accounts/40c83ff23b2e #Your UES_URI, strip off the trailing /open-analytics
#TD_PAT=gwxhQG2UZcDqQlp9LKWjEBfXB7 #Your PAT if you have Teradata Lake system.
TD_PEM=/root/td_ai_stack/demo_key.pem #Your PEM with full path where you kept on host
VS_NAME=vs_example #Your target Vector Store Name
# ------------ Flowise env varieable -------------------#
PORT=3000
CORS_ORIGINS=*
IFRAME_ORIGINS=*
DATA_DIR=~/td_ai_stack/.flowise # host dir to persist data of flowise
```
5. **Create docker-compose.yaml file** to up teradata-mcp-server and flowise containers
```
cd ~/td_ai_stack
vi docker-compose.yaml
```
```
services:
flowise:
image: flowise:latest
restart: always
environment:
- PORT=${PORT}
# LOGGING
- DEBUG=${DEBUG}
# SETTINGS
- CORS_ORIGINS=${CORS_ORIGINS}
- IFRAME_ORIGINS=${IFRAME_ORIGINS}
# Default Teradata Configuration env to refer into flowise
- TD_MCP_SERVER=http://teradata-mcp-server:8001/mcp
ports:
- "${PORT}:${PORT}"
extra_hosts:
- "dbccop1:${DATABASE_HOST}"
container_name: flowise
healthcheck:
test: ['CMD', 'curl', '-f', 'http://localhost:${PORT}/api/v1/ping']
interval: 10s
timeout: 5s
retries: 5
start_period: 30s
volumes:
- ${DATA_DIR}/.flowise:/root/.flowise
teradata-mcp-server:
image: teradata-mcp-server:latest
restart: always
environment:
- DATABASE_URI=${DATABASE_URI}
- LOGMECH=${LOGMECH}
- MCP_TRANSPORT=${MCP_TRANSPORT}
- MCP_PATH=${MCP_PATH}
- MCP_HOST=${MCP_HOST}
- MCP_PORT=${MCP_PORT}
- PROFILE=${PROFILE}
- TD_BASE_URL=${TD_BASE_URL}
- TD_PAT=${TD_PAT}
- TD_PEM=${TD_PEM}
- VS_NAME=${VS_NAME}
container_name: teradata-mcp-server
extra_hosts:
- "dbccop1:${DATABASE_HOST}"
ports:
- "${MCP_PORT}:${MCP_PORT}"
volumes:
- ${TD_PEM}:${TD_PEM}
tty: true
networks:
default:
name: td-ai-stack
external: false
```
6. **Up teradata MCP server and flowise container**
```
cd ~/td_ai_stack
mkdir ~/td_ai_stack/.flowise
docker image ls # make sure teradata-mcp-server and flowise container images are available
docker compose up -d --remove-orphans
```
7. **Validate docker container status**
```
docker ps
# teradata-mcp-server container logs
docker logs teradata-mcp-server -f
# Flowise Container logs
docker logs flowise -f
```
8. **Login to flowise**
http://IP:3000 or http://127.0.0.1:3000
first time login - Complete organization setup (set any username and password)

9. **How to configure Teradata MCP server into Flowise Agentflow**
- 9.1. Go Into Agentflows menu and Add new

- 9.2. Drag and Drop Agent and connect it with Start Node


- 9.3. Set up LLM credentials and LLM for Agent
- Double click on Agent-0 , it will show Model to select model from various provider
- select provider like Azure ChatOpenAI and set Azure ChatOpenAI Parameters,
- for connect Credentails select -Create New-, fill details and Add



- 9.4. Add Teradata MCP server as custom MCP server for Tools
- Click on Add Tools
- Select Custom MCP server
- Setup - Custom MCP Server Parameters
```
{
"url": "http://teradata-mcp-server:8001/mcp",
}
```
- Refresh Button of Available Actions
- Click on Drop down to select tools for Agent


10. **Save Agentflow with anyName**

11. **Execute AgentFlow**

