Skip to main content
Glama

Pinecone MCP Server

by Solaceking

Pinecone MCP Server

A Model Context Protocol server for Pinecone vector database operations.

This MCP server provides programmatic access to Pinecone vector database operations, enabling AI assistants to perform semantic search, manage vectors, and interact with your knowledge base through standardized MCP tools.

Features

Tools

🔍 query_vectors

Perform semantic search on your Pinecone database

  • Input: Text query, optional top_k and include_metadata parameters
  • Output: JSON response with matching vectors and similarity scores
  • Use case: Find relevant documents based on natural language queries
upsert_vectors

Add new documents to your vector database

  • Input: Array of texts, optional metadata and IDs
  • Output: Confirmation of successful vector insertion
  • Use case: Index new documents or update existing knowledge base
🗑️ delete_vectors

Remove vectors from your database

  • Input: Array of vector IDs or delete_all flag
  • Output: Confirmation of deletion operation
  • Use case: Clean up outdated information or reset database
📊 get_index_stats

Monitor your Pinecone database

  • Input: None
  • Output: Index statistics including vector count and configuration
  • Use case: Track database usage and performance

Quick Start

Prerequisites

  • Node.js 18+
  • Pinecone account and API key
  • OpenAI API key (for embeddings)

Installation

  1. Clone and install dependencies:
git clone <your-repo-url> cd pinecone-mcp-server npm install
  1. Build the server:
npm run build
  1. Configure environment variables:
export PINECONE_API_KEY="your_pinecone_key" export OPENAI_API_KEY="your_openai_key" export PINECONE_INDEX_NAME="your_index_name" # optional, defaults to "ad-assessor-docs"
  1. Run the server:
node build/index.js

MCP Configuration

For Claude Desktop

Add to your MCP configuration file:

MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%/Claude/claude_desktop_config.json

{ "mcpServers": { "pinecone": { "command": "node", "args": ["/path/to/pinecone-mcp-server/build/index.js"], "env": { "PINECONE_API_KEY": "your_key_here", "OPENAI_API_KEY": "your_key_here", "PINECONE_INDEX_NAME": "your_index_name" } } } }

For Cline (VSCode)

Add to: %APPDATA%/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json

{ "mcpServers": { "pinecone": { "command": "node", "args": ["C:\\path\\to\\pinecone-mcp-server\\build\\index.js"], "env": { "PINECONE_API_KEY": "your_key_here", "OPENAI_API_KEY": "your_key_here", "PINECONE_INDEX_NAME": "your_index_name" }, "disabled": false, "autoApprove": [] } } }

Docker Deployment

Build Docker Image

docker build -t pinecone-mcp .

Run Container

docker run -e PINECONE_API_KEY=your_key \ -e OPENAI_API_KEY=your_key \ -e PINECONE_INDEX_NAME=your_index \ -p 3000:3000 \ pinecone-mcp

Docker Compose

version: '3.8' services: pinecone-mcp: build: . environment: - PINECONE_API_KEY=your_key - OPENAI_API_KEY=your_key - PINECONE_INDEX_NAME=your_index ports: - "3000:3000"

Development

Project Structure

pinecone-server/ ├── src/ │ └── index.ts # Main MCP server implementation ├── build/ │ └── index.js # Compiled JavaScript ├── Dockerfile # Docker configuration ├── package.json # Dependencies and scripts ├── tsconfig.json # TypeScript configuration └── README.md # This file

Development Commands

# Install dependencies npm install # Build for production npm run build # Development with auto-rebuild npm run watch # Debug with MCP Inspector npm run inspector

Adding New Tools

  1. Define tool schema in ListToolsRequestSchema handler
  2. Implement tool logic in CallToolRequestSchema handler
  3. Update this README with new tool documentation

API Keys Setup

Pinecone

  1. Sign up at pinecone.io
  2. Create a new project and index
  3. Copy your API key from the dashboard

OpenAI

  1. Sign up at platform.openai.com
  2. Navigate to API Keys section
  3. Create a new secret key

Troubleshooting

Common Issues

"Cannot find module" errors:

  • Ensure all dependencies are installed: npm install
  • Check that the build completed successfully: npm run build

Pinecone connection issues:

  • Verify API key is correct and has proper permissions
  • Check that your index exists and is accessible
  • Ensure your Pinecone environment/region is correct

OpenAI API errors:

  • Confirm API key is valid and has credits
  • Check rate limits and usage quotas
  • Verify the model name is correct (text-embedding-ada-002)

Debugging

Use the MCP Inspector for debugging:

npm run inspector

This provides a web interface to test your MCP server interactively.

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

License

MIT License - see LICENSE file for details

Support

For issues and questions:

  • Open an issue on GitHub
  • Check the MCP documentation: https://modelcontextprotocol.io
  • Review Pinecone documentation: https://docs.pinecone.io
-
security - not tested
F
license - not found
-
quality - not tested

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

Enables AI assistants to perform semantic search, manage vectors, and interact with Pinecone vector databases through standardized MCP tools. Supports querying, upserting, deleting vectors and monitoring database statistics for knowledge base operations.

  1. Features
    1. Tools
  2. Quick Start
    1. Prerequisites
    2. Installation
  3. MCP Configuration
    1. For Claude Desktop
    2. For Cline (VSCode)
  4. Docker Deployment
    1. Build Docker Image
    2. Run Container
    3. Docker Compose
  5. Development
    1. Project Structure
    2. Development Commands
    3. Adding New Tools
  6. API Keys Setup
    1. Pinecone
    2. OpenAI
  7. Troubleshooting
    1. Common Issues
    2. Debugging
  8. Contributing
    1. License
      1. Support

        MCP directory API

        We provide all the information about MCP servers via our MCP API.

        curl -X GET 'https://glama.ai/api/mcp/v1/servers/Solaceking/pinecone-mcp-server'

        If you have feedback or need assistance with the MCP directory API, please join our Discord server