Skip to main content
Glama

Context Engineering MCP Platform

context_analyzer.py18.3 kB
import logging import re import json from typing import Dict, List, Any, Optional, Tuple from datetime import datetime import google.generativeai as genai from collections import Counter import statistics from context_models import ( ContextWindow, ContextElement, ContextAnalysis, ContextQuality, MultimodalContext, RAGContext ) logger = logging.getLogger(__name__) class ContextAnalyzer: """コンテキスト分析エンジン""" def __init__(self, gemini_api_key: str): genai.configure(api_key=gemini_api_key) self.model = genai.GenerativeModel('gemini-2.0-flash-exp') async def analyze_context_window(self, window: ContextWindow) -> ContextAnalysis: """コンテキストウィンドウの包括的分析""" analysis = ContextAnalysis( context_id=window.id, analysis_type="comprehensive" ) # 基本メトリクス計算 basic_metrics = self._calculate_basic_metrics(window) analysis.metrics.update(basic_metrics) # 構造分析 structure_analysis = self._analyze_structure(window) analysis.metrics.update(structure_analysis) # 意味的一貫性分析 semantic_analysis = await self._analyze_semantic_consistency(window) analysis.metrics.update(semantic_analysis["metrics"]) analysis.insights.extend(semantic_analysis["insights"]) # トークン効率性分析 efficiency_analysis = self._analyze_token_efficiency(window) analysis.metrics.update(efficiency_analysis) # 品質評価 quality_assessment = await self._assess_quality(window, analysis.metrics) analysis.quality_score = quality_assessment["score"] analysis.issues.extend(quality_assessment["issues"]) analysis.strengths.extend(quality_assessment["strengths"]) analysis.recommendations.extend(quality_assessment["recommendations"]) return analysis def _calculate_basic_metrics(self, window: ContextWindow) -> Dict[str, float]: """基本メトリクス計算""" if not window.elements: return { "total_elements": 0, "total_tokens": 0, "avg_element_length": 0, "token_utilization": 0 } element_lengths = [len(elem.content) for elem in window.elements] return { "total_elements": len(window.elements), "total_tokens": window.current_tokens, "avg_element_length": statistics.mean(element_lengths), "max_element_length": max(element_lengths), "min_element_length": min(element_lengths), "token_utilization": window.utilization_ratio, "available_tokens": window.available_tokens } def _analyze_structure(self, window: ContextWindow) -> Dict[str, float]: """構造分析""" if not window.elements: return {} # 要素タイプの分布 type_counts = Counter(elem.type.value for elem in window.elements) total_elements = len(window.elements) # 優先度分析 priorities = [elem.priority for elem in window.elements] # 時系列分析 creation_times = [elem.created_at for elem in window.elements] time_span = (max(creation_times) - min(creation_times)).total_seconds() if len(creation_times) > 1 else 0 return { "type_diversity": len(type_counts) / max(len(type_counts), 1), "avg_priority": statistics.mean(priorities), "priority_std": statistics.stdev(priorities) if len(priorities) > 1 else 0, "time_span_hours": time_span / 3600, "system_ratio": type_counts.get("system", 0) / total_elements, "user_ratio": type_counts.get("user", 0) / total_elements, "assistant_ratio": type_counts.get("assistant", 0) / total_elements } async def _analyze_semantic_consistency(self, window: ContextWindow) -> Dict[str, Any]: """意味的一貫性分析""" if not window.elements: return {"metrics": {}, "insights": []} try: # コンテキスト要素をテキストとして結合 context_text = "\n\n".join([ f"[{elem.type.value}] {elem.content}" for elem in window.elements ]) prompt = f""" 以下のコンテキストの意味的一貫性を分析してください: {context_text} 以下の観点で分析してください: 1. 話題の一貫性(0-1スコア) 2. 論理的流れ(0-1スコア) 3. 情報の重複度(0-1スコア、1が高重複) 4. 文脈の明確性(0-1スコア) 5. 目的との整合性(0-1スコア) また、以下の洞察を提供してください: - 主要なテーマや話題 - 潜在的な問題点 - 改善提案 JSON形式で回答してください: {{ "metrics": {{ "topic_consistency": 0.8, "logical_flow": 0.7, "information_redundancy": 0.3, "context_clarity": 0.9, "goal_alignment": 0.8 }}, "insights": [ "主要テーマは...", "改善点は..." ] }} """ response = self.model.generate_content(prompt) result = json.loads(response.text) return result except Exception as e: logger.error(f"Semantic analysis failed: {str(e)}") return { "metrics": { "topic_consistency": 0.5, "logical_flow": 0.5, "information_redundancy": 0.5, "context_clarity": 0.5, "goal_alignment": 0.5 }, "insights": [f"分析エラー: {str(e)}"] } def _analyze_token_efficiency(self, window: ContextWindow) -> Dict[str, float]: """トークン効率性分析""" if not window.elements: return {} # 情報密度計算 total_chars = sum(len(elem.content) for elem in window.elements) total_words = sum(len(elem.content.split()) for elem in window.elements) # 冗長性分析 redundancy_score = self._calculate_redundancy(window) return { "chars_per_token": total_chars / max(window.current_tokens, 1), "words_per_token": total_words / max(window.current_tokens, 1), "information_density": total_words / max(total_chars, 1), "redundancy_score": redundancy_score, "efficiency_score": 1.0 - redundancy_score } def _calculate_redundancy(self, window: ContextWindow) -> float: """冗長性計算""" if len(window.elements) < 2: return 0.0 contents = [elem.content.lower() for elem in window.elements] # 単語レベルでの重複計算 all_words = [] for content in contents: words = re.findall(r'\w+', content) all_words.extend(words) if not all_words: return 0.0 word_counts = Counter(all_words) duplicate_words = sum(count - 1 for count in word_counts.values() if count > 1) return duplicate_words / len(all_words) async def _assess_quality(self, window: ContextWindow, metrics: Dict[str, float]) -> Dict[str, Any]: """品質評価""" # 重み付きスコア計算 weights = { "token_utilization": 0.2, "topic_consistency": 0.25, "logical_flow": 0.2, "context_clarity": 0.2, "efficiency_score": 0.15 } weighted_score = 0.0 total_weight = 0.0 for metric, weight in weights.items(): if metric in metrics: weighted_score += metrics[metric] * weight total_weight += weight if total_weight > 0: quality_score = weighted_score / total_weight else: quality_score = 0.5 # 問題点と強み、推奨事項の特定 issues = [] strengths = [] recommendations = [] # トークン使用率チェック if metrics.get("token_utilization", 0) > 0.9: issues.append("トークン使用率が高すぎます(90%超)") recommendations.append("低優先度の要素を削除してください") elif metrics.get("token_utilization", 0) < 0.3: issues.append("トークン使用率が低すぎます(30%未満)") recommendations.append("より多くの関連情報を追加できます") else: strengths.append("適切なトークン使用率です") # 一貫性チェック if metrics.get("topic_consistency", 0) < 0.6: issues.append("話題の一貫性が低いです") recommendations.append("関連性の低い要素を整理してください") else: strengths.append("話題の一貫性が良好です") # 冗長性チェック if metrics.get("redundancy_score", 0) > 0.4: issues.append("情報の重複が多いです") recommendations.append("重複する内容を統合してください") else: strengths.append("情報の重複が適切に管理されています") return { "score": quality_score, "issues": issues, "strengths": strengths, "recommendations": recommendations } class MultimodalAnalyzer: """マルチモーダルコンテキスト分析""" def __init__(self, gemini_api_key: str): genai.configure(api_key=gemini_api_key) self.model = genai.GenerativeModel('gemini-2.0-flash-exp') async def analyze_multimodal_context(self, context: MultimodalContext) -> ContextAnalysis: """マルチモーダルコンテキストの分析""" analysis = ContextAnalysis( context_id=context.id, analysis_type="multimodal" ) # 基本メトリクス analysis.metrics.update({ "text_token_estimate": len(context.text_content.split()) * 1.3, "image_count": len(context.image_urls), "audio_count": len(context.audio_urls), "video_count": len(context.video_urls), "document_count": len(context.document_urls), "total_token_estimate": context.total_token_estimate, "modality_diversity": self._calculate_modality_diversity(context) }) # モダリティ間の整合性分析 if context.text_content and context.extracted_content: consistency_score = await self._analyze_cross_modal_consistency(context) analysis.metrics["cross_modal_consistency"] = consistency_score # 推奨事項 if len(context.image_urls) > 5: analysis.recommendations.append("画像の数が多すぎます。最も関連性の高いものを選択してください") if context.total_token_estimate > 8000: analysis.recommendations.append("総トークン数が多すぎます。コンテンツを圧縮してください") return analysis def _calculate_modality_diversity(self, context: MultimodalContext) -> float: """モダリティの多様性計算""" modalities = [] if context.text_content: modalities.append("text") if context.image_urls: modalities.append("image") if context.audio_urls: modalities.append("audio") if context.video_urls: modalities.append("video") if context.document_urls: modalities.append("document") return len(modalities) / 5.0 # 最大5つのモダリティ async def _analyze_cross_modal_consistency(self, context: MultimodalContext) -> float: """モダリティ間の整合性分析""" try: prompt = f""" 以下のマルチモーダルコンテンツの整合性を0-1で評価してください: テキスト: {context.text_content[:500]}... 抽出されたコンテンツ: {json.dumps(context.extracted_content, ensure_ascii=False, indent=2)} テキストと他のモダリティから抽出されたコンテンツがどの程度一貫しているか、 0(全く一貫していない)から1(完全に一貫している)で評価してください。 数値のみで回答してください。 """ response = self.model.generate_content(prompt) score = float(response.text.strip()) return max(0.0, min(1.0, score)) # 0-1に正規化 except Exception as e: logger.error(f"Cross-modal consistency analysis failed: {str(e)}") return 0.5 class RAGAnalyzer: """RAGコンテキスト分析""" def __init__(self, gemini_api_key: str): genai.configure(api_key=gemini_api_key) self.model = genai.GenerativeModel('gemini-2.0-flash-exp') async def analyze_rag_context(self, rag_context: RAGContext) -> ContextAnalysis: """RAGコンテキストの分析""" analysis = ContextAnalysis( context_id=rag_context.id, analysis_type="rag" ) # 基本メトリクス analysis.metrics.update({ "retrieved_documents_count": len(rag_context.retrieved_documents), "avg_similarity_score": statistics.mean(rag_context.similarity_scores) if rag_context.similarity_scores else 0, "max_similarity_score": max(rag_context.similarity_scores) if rag_context.similarity_scores else 0, "min_similarity_score": min(rag_context.similarity_scores) if rag_context.similarity_scores else 0, "similarity_variance": statistics.variance(rag_context.similarity_scores) if len(rag_context.similarity_scores) > 1 else 0 }) # 関連性分析 if rag_context.retrieved_documents: relevance_analysis = await self._analyze_retrieval_relevance(rag_context) analysis.metrics.update(relevance_analysis["metrics"]) analysis.insights.extend(relevance_analysis["insights"]) # 多様性分析 diversity_score = self._calculate_retrieval_diversity(rag_context) analysis.metrics["retrieval_diversity"] = diversity_score return analysis async def _analyze_retrieval_relevance(self, rag_context: RAGContext) -> Dict[str, Any]: """検索結果の関連性分析""" try: documents_text = "\n\n".join([ f"Document {i+1}: {doc.get('content', str(doc))[:200]}..." for i, doc in enumerate(rag_context.retrieved_documents[:5]) ]) prompt = f""" 検索クエリ: {rag_context.query} 検索結果: {documents_text} 以下を分析してください: 1. 検索結果がクエリにどの程度関連しているか(0-1) 2. 検索結果間の情報の重複度(0-1) 3. 検索結果の包括性(0-1) JSON形式で回答: {{ "metrics": {{ "query_relevance": 0.8, "result_redundancy": 0.3, "coverage_completeness": 0.7 }}, "insights": ["洞察1", "洞察2"] }} """ response = self.model.generate_content(prompt) return json.loads(response.text) except Exception as e: logger.error(f"RAG relevance analysis failed: {str(e)}") return { "metrics": { "query_relevance": 0.5, "result_redundancy": 0.5, "coverage_completeness": 0.5 }, "insights": [f"分析エラー: {str(e)}"] } def _calculate_retrieval_diversity(self, rag_context: RAGContext) -> float: """検索結果の多様性計算""" if len(rag_context.retrieved_documents) < 2: return 0.0 # 簡易的な多様性計算(文書間の語彙の重複度から算出) all_words = [] doc_word_sets = [] for doc in rag_context.retrieved_documents: content = doc.get('content', str(doc)) words = set(re.findall(r'\w+', content.lower())) doc_word_sets.append(words) all_words.extend(words) if not all_words: return 0.0 # ジャッカード距離の平均を計算 similarities = [] for i in range(len(doc_word_sets)): for j in range(i + 1, len(doc_word_sets)): intersection = len(doc_word_sets[i] & doc_word_sets[j]) union = len(doc_word_sets[i] | doc_word_sets[j]) if union > 0: jaccard_sim = intersection / union similarities.append(jaccard_sim) if similarities: avg_similarity = statistics.mean(similarities) diversity_score = 1.0 - avg_similarity # 類似度が低いほど多様性が高い else: diversity_score = 0.0 return diversity_score

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ShunsukeHayashi/context_engineering_MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server