MCP Audio Transcriber

MIT License
  • Linux

Integrations

  • Enables containerized deployment of the transcription service, making it portable and providing a consistent runtime environment.

  • Provides audio file processing capabilities, allowing the transcription service to handle various audio formats like .wav, .mp3, .ogg, and .m4a.

  • Integrates with OpenAI's Whisper models to provide high-quality, multi-language audio transcription with options for different model sizes.

MCP Audio Transcriber

A portable, Dockerized Python tool that implements a Model Context Protocol (MCP) for audio transcription using OpenAI's Whisper models—and even ships with a Streamlit-powered web UI so you can upload an audio file and download the transcription as JSON.

🚀 Features

  • Modular MCP interface (mcp.py) that defines a standard ModelContextProtocol.
  • Whisper-based implementation (WhisperMCP) for high-quality, multi-language transcription.
  • Command-line interface (app.py) for batch or ad-hoc transcription:
    python app.py <input_audio> <output_json> [--model MODEL_NAME]
  • Docker support for a consistent runtime:
    docker build -t mcp-transcriber . docker run --rm \ -v /full/path/to/data:/data \ mcp-transcriber:latest \ /data/input.wav /data/output.json
  • Streamlit web app (streamlit_app.py) letting end users:
    • Upload any common audio file (.wav, .mp3, .ogg, .m4a)
    • Choose a Whisper model size
    • Preview the transcription live
    • Download the JSON result with one click

📦 Prerequisites

  • Python 3.10+
  • ffmpeg installed & on your PATH
  • (Optional) Docker Engine / Docker Desktop
  • (Optional) Streamlit

🔧 Installation

  1. Clone the repo
    git clone https://github.com/ShreyasTembhare/MCP---Audio-Transcriber.git cd MCP---Audio-Transcriber
  2. Python dependencies & FFmpeg
    pip install --upgrade pip pip install -r requirements.txt # On Ubuntu/Debian: sudo apt update && sudo apt install ffmpeg # On Windows: # Download a static build from https://ffmpeg.org and add its bin/ to your PATH
  3. (Optional) Docker
    • Install Docker Desktop
    • Enable WSL integration if using WSL2.
  4. (Optional) Streamlit
    pip install streamlit

🎯 Usage

1. CLI Transcription

python app.py <input_audio> <output_json> [--model tiny|base|small|medium|large]
  • <input_audio>: path to your audio file
  • <output_json>: path where the JSON result will be saved
  • --model: choose Whisper model size (default: base)

Example:

python app.py data/input.ogg data/output.json --model tiny cat data/output.json

2. Docker

Build the image:

docker build -t mcp-transcriber .

Run it (mounting your data/ folder):

docker run --rm \ -v "/full/path/to/your/project/data:/data" \ mcp-transcriber:latest \ /data/input.wav /data/output.json

Then inspect:

ls data/output.json cat data/output.json

3. Streamlit Web UI

Launch the app:

streamlit run streamlit_app.py
  • Open http://localhost:8501 in your browser
  • Upload an audio file
  • Select the Whisper model size
  • Click Transcribe
  • Preview & download the resulting JSON

📁 Project Structure

MCP-Audio-Transcriber/ ├── app.py # CLI entrypoint ├── mcp.py # Model Context Protocol + WhisperMCP ├── requirements.txt # Python dependencies ├── streamlit_app.py # Streamlit interface ├── Dockerfile # Container definition ├── .gitignore # ignore **pycache**, venvs, etc. ├── LICENSE # MIT license └── data/ # sample input and output ├── input.ogg └── output.json
-
security - not tested
A
license - permissive license
-
quality - not tested

A portable, Dockerized Python tool that implements Model Context Protocol for audio transcription using Whisper models, featuring both CLI and web UI interfaces for converting audio files to JSON transcriptions.

  1. 🚀 Features
    1. 📦 Prerequisites
      1. 🔧 Installation
        1. 🎯 Usage
          1. CLI Transcription
          2. Docker
          3. Streamlit Web UI
        2. 📁 Project Structure

          Related MCP Servers

          • -
            security
            F
            license
            -
            quality
            Provides text-to-speech capabilities through the Model Context Protocol, allowing applications to easily integrate speech synthesis with customizable voices, adjustable speech speed, and cross-platform audio playback support.
            Last updated -
            2
            Python
          • -
            security
            A
            license
            -
            quality
            A Model Context Protocol server that allows AI assistants like Claude and Cursor to create music and control Sonic Pi programmatically through OSC messages.
            Last updated -
            JavaScript
            MIT License
          • A
            security
            A
            license
            A
            quality
            A MCP server that enables transcription of audio files using OpenAI's Speech-to-Text API, with support for multiple languages and file saving options.
            Last updated -
            1
            2
            JavaScript
            MIT License
            • Linux
            • Apple
          • A
            security
            A
            license
            A
            quality
            A Model Context Protocol server that enables AI models to generate and play high-quality text-to-speech audio through your device's native audio system using Rime's voice synthesis API.
            Last updated -
            1
            176
            4
            JavaScript
            The Unlicense
            • Apple
            • Linux

          View all related MCP servers

          ID: kts1za3i9v