MCP-wolfram-alpha

by SecretiveShell
Verified
MIT License
18
# MCP-wolfram-alpha A MCP server to connect to wolfram alpha API. <a href="https://glama.ai/mcp/servers/q5fud9cttp"> <img width="380" height="200" src="https://glama.ai/mcp/servers/q5fud9cttp/badge" /> </a> ## Components ### Prompts This is analogous to the `!wa` bang in duckduckgo search. ```python def wa(query: str) -> f"Use wolfram alpha to answer the following question: {query}" ``` ### Tools Query Wolfram Alpha api. ```python def query_wolfram_alpha(query: str) -> str ``` ## Configuration You **must** set the `WOLFRAM_API_KEY` environment variable. Get an api ket from [Wolfram Alpha](https://products.wolframalpha.com/api). This was tested with the full results API, but it might not be required. ```json { "mcpServers": { "MCP-wolfram-alpha": { "command": "uv", "args": [ "--directory", "C:\\Users\\root\\Documents\\MCP-wolfram-alpha", "run", "MCP-wolfram-alpha" ], "env": { "WOLFRAM_API_KEY": "your-app-id" } } } } ``` ## Development ### Debugging Since the official MCP inspector does not have good environment support, I reccommend using wong2's [mcp-cli-inspector](https://github.com/wong2/mcp-cli). Create a config.json file in the same style as claude desktop. ```json { "mcpServers": { "MCP-wolfram-alpha": { "command": "uv", "args": [ "--directory", "/full/path/to/MCP-wolfram-alpha", "run", "MCP-wolfram-alpha" ], "env": { "WOLFRAM_API_KEY": "your-app-id" } } } } ``` Then run: ```bash npx @wong2/mcp-cli -c .\config.json ```