Skip to main content
Glama

Adaptive Graph of Thoughts MCP Server

config.schema.jsonβ€’15.1 kB
{ "$schema": "http://json-schema.org/draft-07/schema#", "title": "Adaptive Graph of Thoughts Configuration Schema", "description": "Schema for validating the Adaptive Graph of Thoughts application settings (settings.yaml).", "type": "object", "properties": { "app": { "type": "object", "title": "Application Settings", "description": "Main application settings for Adaptive Graph of Thoughts.", "properties": { "name": { "type": "string", "default": "Adaptive Graph of Thoughts", "description": "Application name." }, "version": { "type": "string", "default": "0.1.0", "description": "Application version. Should ideally match pyproject.toml." }, "host": { "type": "string", "default": "0.0.0.0", "description": "Host address for Uvicorn server." }, "port": { "type": "integer", "default": 8000, "description": "Default port for Uvicorn server. Can be overridden by APP__PORT environment variable." }, "log_level": { "type": "string", "default": "INFO", "description": "Default log level (DEBUG, INFO, WARNING, ERROR, CRITICAL)." }, "cors_allowed_origins_str": { "type": "string", "default": "*", "description": "Comma-separated list of allowed CORS origins, or '*' for all. Environment variable: APP_CORS_ALLOWED_ORIGINS_STR." }, "uvicorn_reload": { "type": "boolean", "default": true, "description": "Enable Uvicorn auto-reload (True for dev, False for prod). Environment variable: APP_UVICORN_RELOAD." }, "uvicorn_workers": { "type": "integer", "default": 1, "description": "Number of Uvicorn workers (e.g., (2 * CPU_CORES) + 1). Default is 1. Environment variable: APP_UVICORN_WORKERS." }, "auth_token": { "type": ["string", "null"], "default": null, "description": "Optional API authentication token for MCP endpoint. If set, requests to /mcp require this token in the Authorization header. Environment variable: APP_AUTH_TOKEN." }, "mcp_transport_type": { "type": "string", "enum": ["http", "stdio", "both"], "default": "http", "description": "Allowed values: 'http', 'stdio', or 'both'. Environment variable: MCP_TRANSPORT_TYPE." }, "mcp_stdio_enabled": { "type": "boolean", "default": true, "description": "Enable STDIO transport for MCP. Environment variable: MCP_STDIO_ENABLED." }, "mcp_http_enabled": { "type": "boolean", "default": true, "description": "Enable HTTP transport for MCP. Environment variable: MCP_HTTP_ENABLED." } }, "required": [ "name", "version", "host", "port", "log_level", "cors_allowed_origins_str", "uvicorn_reload", "uvicorn_workers", "mcp_transport_type", "mcp_stdio_enabled", "mcp_http_enabled" ], "additionalProperties": false }, "asr_got": { "type": "object", "title": "ASR-GoT Core Parameters", "description": "Configuration for the Adaptive Graph of Thoughts ASR-GoT (Automated Scientific Reasoning - Graph of Thoughts) engine.", "properties": { "default_parameters": { "type": "object", "title": "Default ASR-GoT Parameters", "properties": { "initial_confidence": { "type": "array", "items": { "type": "number", "format": "float" }, "default": [0.9, 0.9, 0.9, 0.9], "description": "Initial confidence scores for hypotheses/nodes." }, "initial_layer": { "type": "string", "default": "root_layer", "description": "Default layer for initial task decomposition." }, "default_decomposition_dimensions": { "type": "array", "items": { "type": "object", "properties": { "label": { "type": "string" }, "description": { "type": "string" } }, "required": ["label", "description"], "additionalProperties": false }, "default": [], "description": "Predefined dimensions for task decomposition." }, "dimension_confidence": { "type": "array", "items": { "type": "number", "format": "float" }, "default": [0.8, 0.8, 0.8, 0.8], "description": "Confidence scores associated with decomposition dimensions." }, "hypotheses_per_dimension": { "type": "object", "title": "Hypotheses per Dimension", "properties": { "min": { "type": "integer", "default": 2 }, "max": { "type": "integer", "default": 4 } }, "required": ["min", "max"], "additionalProperties": false, "description": "Range for the number of hypotheses generated per dimension." }, "hypothesis_confidence": { "type": "array", "items": { "type": "number", "format": "float" }, "default": [0.5, 0.5, 0.5, 0.5], "description": "Default confidence scores for newly generated hypotheses." }, "default_disciplinary_tags": { "type": "array", "items": { "type": "string" }, "default": [], "description": "Default disciplinary tags applied to tasks or hypotheses." }, "default_plan_types": { "type": "array", "items": { "type": "string" }, "default": [], "description": "Default types of plans that can be generated." }, "evidence_max_iterations": { "type": "integer", "default": 5, "description": "Maximum iterations for evidence gathering and integration." }, "pruning_confidence_threshold": { "type": "number", "format": "float", "default": 0.2, "description": "Minimum confidence for a node to avoid pruning." }, "pruning_impact_threshold": { "type": "number", "format": "float", "default": 0.3, "description": "Minimum impact for a node to avoid pruning." }, "merging_semantic_overlap_threshold": { "type": "number", "format": "float", "default": 0.8, "description": "Semantic similarity threshold for merging nodes." }, "subgraph_min_confidence_threshold": { "type": "number", "format": "float", "default": 0.6, "description": "Minimum confidence for nodes in extracted subgraphs." }, "subgraph_min_impact_threshold": { "type": "number", "format": "float", "default": 0.5, "description": "Minimum impact for nodes in extracted subgraphs." } }, "required": [ "initial_confidence", "initial_layer", "default_decomposition_dimensions", "dimension_confidence", "hypotheses_per_dimension", "hypothesis_confidence", "default_disciplinary_tags", "default_plan_types", "evidence_max_iterations", "pruning_confidence_threshold", "pruning_impact_threshold", "merging_semantic_overlap_threshold", "subgraph_min_confidence_threshold", "subgraph_min_impact_threshold" ], "additionalProperties": false }, "layers": { "type": "object", "title": "Layer Definitions", "description": "Definitions for different layers in the multi-layer network.", "patternProperties": { "^[a-zA-Z0-9_]+$": { "type": "object", "properties": { "description": { "type": "string" } }, "required": ["description"], "additionalProperties": false } }, "additionalProperties": false, "default": {} }, "pipeline_stages": { "type": "array", "title": "ASR-GoT Pipeline Stages", "description": "Defines the sequence of stages in the ASR-GoT processing pipeline. Stages are executed in the order they appear in this list.", "items": { "type": "object", "title": "Stage Item Configuration", "properties": { "name": { "type": "string", "description": "A friendly name for the stage (e.g., 'Initialization')." }, "module_path": { "type": "string", "description": "The full Python path to the stage class (e.g., 'src.adaptive_graph_of_thoughts.domain.stages.InitializationStage')." }, "enabled": { "type": "boolean", "default": true, "description": "Whether this stage is enabled and should be included in the pipeline." } }, "required": ["name", "module_path"], "additionalProperties": false }, "default": [] } }, "required": ["default_parameters", "layers", "pipeline_stages"], "additionalProperties": false }, "mcp_settings": { "type": "object", "title": "MCP Server Settings", "description": "Configuration for Model Context Protocol (MCP) server behavior.", "properties": { "protocol_version": { "type": "string", "default": "2024-11-05", "description": "MCP protocol version." }, "server_name": { "type": "string", "default": "Adaptive Graph of Thoughts MCP Server", "description": "Name of the MCP server." }, "server_version": { "type": "string", "default": "0.1.0", "description": "Version of the MCP server, should match app.version." }, "vendor_name": { "type": "string", "default": "AI Research Group", "description": "Vendor name for MCP." } }, "required": [ "protocol_version", "server_name", "server_version", "vendor_name" ], "additionalProperties": false }, "claude_api": { "type": ["object", "null"], "title": "Claude API Configuration", "description": "Optional settings for direct Claude API integration.", "properties": { "api_key": { "type": ["string", "null"], "description": "API key for Claude. Can be the key itself or 'env_var:YOUR_ENV_VAR_NAME'." }, "default_model": { "type": "string", "default": "claude-3-opus-20240229", "description": "Default Claude model to use." }, "timeout_seconds": { "type": "integer", "default": 120, "description": "Timeout for Claude API requests in seconds." }, "max_retries": { "type": "integer", "default": 2, "description": "Maximum number of retries for Claude API requests." } }, "required": ["default_model", "timeout_seconds", "max_retries"], "additionalProperties": false, "default": null }, "google_scholar": { "type": ["object", "null"], "title": "Google Scholar API Configuration", "description": "Settings for accessing Google Scholar, potentially via an intermediary like SerpApi.", "properties": { "api_key": { "type": ["string", "null"], "description": "API key for Google Scholar (e.g., SerpApi key). Can be the key itself or 'env_var:YOUR_ENV_VAR_NAME'." }, "base_url": { "type": "string", "format": "uri", "default": "https://serpapi.com/search", "description": "Base URL for the Google Scholar search API." } }, "additionalProperties": false, "default": null }, "pubmed": { "type": ["object", "null"], "title": "PubMed API Configuration", "description": "Settings for accessing NCBI E-utilities (PubMed).", "properties": { "api_key": { "type": ["string", "null"], "description": "API key for NCBI E-utilities. Can be the key itself or 'env_var:YOUR_ENV_VAR_NAME'." }, "base_url": { "type": "string", "format": "uri", "default": "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/", "description": "Base URL for the PubMed API." }, "email": { "type": ["string", "null"], "format": "email", "description": "Email address for NCBI E-utilities (recommended by NCBI). Can be the email itself or 'env_var:YOUR_ENV_VAR_NAME'." } }, "additionalProperties": false, "default": null }, "exa_search": { "type": ["object", "null"], "title": "Exa Search API Configuration", "description": "Settings for accessing the Exa Search API.", "properties": { "api_key": { "type": ["string", "null"], "description": "API key for Exa Search. Can be the key itself or 'env_var:YOUR_ENV_VAR_NAME'." }, "base_url": { "type": "string", "format": "uri", "default": "https://api.exa.ai", "description": "Base URL for the Exa Search API." } }, "additionalProperties": false, "default": null }, "knowledge_domains": { "type": "array", "title": "Knowledge Domains", "description": "List of predefined knowledge domains or disciplines.", "items": { "type": "object", "properties": { "name": { "type": "string" }, "keywords": { "type": "array", "items": { "type": "string" }, "default": [] }, "description": { "type": ["string", "null"] } }, "required": ["name"], "additionalProperties": false }, "default": [] } }, "required": [ "app", "asr_got", "mcp_settings" ], "additionalProperties": false }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/SaptaDey/Adaptive-Graph-of-Thoughts-MCP-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server