Skip to main content
Glama

MCP Ahrefs

by SAGAAIDEV

simulate_heavy_computation

Execute parallelized heavy computational tasks efficiently with this tool. It accepts a list of argument sets, processes them concurrently, and returns results in the input order, optimizing performance for computational workloads.

Instructions

Parallelized version of simulate_heavy_computation.

This function accepts a list of keyword argument dictionaries and executes simulate_heavy_computation concurrently for each set of arguments.

Original function signature: simulate_heavy_computation(complexity: int)

Args: kwargs_list (List[Dict[str, Any]]): A list of dictionaries, where each dictionary provides the keyword arguments for a single call to simulate_heavy_computation.

Returns: List[Any]: A list containing the results of each call to simulate_heavy_computation, in the same order as the input kwargs_list.

Original docstring: Simulate a heavy computation task.

This tool demonstrates parallelization benefits by performing a computationally intensive task that can be parallelized. Args: complexity: Complexity level (1-10, higher = more computation) Returns: Dictionary containing computation results

Input Schema

NameRequiredDescriptionDefault
kwargs_listYes

Input Schema (JSON Schema)

{ "properties": { "kwargs_list": { "items": { "additionalProperties": true, "type": "object" }, "title": "Kwargs List", "type": "array" } }, "required": [ "kwargs_list" ], "title": "simulate_heavy_computationArguments", "type": "object" }
Install Server

Other Tools from MCP Ahrefs

Related Tools

    MCP directory API

    We provide all the information about MCP servers via our MCP API.

    curl -X GET 'https://glama.ai/api/mcp/v1/servers/SAGAAIDEV/mcp-ahrefs'

    If you have feedback or need assistance with the MCP directory API, please join our Discord server