Skip to main content
Glama

MCP Ahrefs

by SAGAAIDEV

process_batch_data

Process multiple data batches concurrently using keyword argument dictionaries. Enables efficient parallelization for operations like text transformations, with integrated exception handling and logging for SEO data analysis.

Instructions

Parallelized version of process_batch_data.

This function accepts a list of keyword argument dictionaries and executes process_batch_data concurrently for each set of arguments.

Original function signature: process_batch_data(items: List, operation: str)

Args: kwargs_list (List[Dict[str, Any]]): A list of dictionaries, where each dictionary provides the keyword arguments for a single call to process_batch_data.

Returns: List[Any]: A list containing the results of each call to process_batch_data, in the same order as the input kwargs_list.

Original docstring: Process a batch of data items.

This is an example of a tool that benefits from parallelization. It will be automatically decorated with the parallelize decorator in addition to exception handling and logging. Args: items: List of strings to process operation: Operation to perform ('upper', 'lower', 'reverse') Returns: Processed items with metadata

Input Schema

NameRequiredDescriptionDefault
kwargs_listYes

Input Schema (JSON Schema)

{ "properties": { "kwargs_list": { "items": { "additionalProperties": true, "type": "object" }, "title": "Kwargs List", "type": "array" } }, "required": [ "kwargs_list" ], "title": "process_batch_dataArguments", "type": "object" }
Install Server

Other Tools from MCP Ahrefs

Related Tools

    MCP directory API

    We provide all the information about MCP servers via our MCP API.

    curl -X GET 'https://glama.ai/api/mcp/v1/servers/SAGAAIDEV/mcp-ahrefs'

    If you have feedback or need assistance with the MCP directory API, please join our Discord server