Skip to main content
Glama

BigContext MCP

MCP Server for handling large documents with intelligent segmentation and TF-IDF search. Designed to work with documents of any size without saturating the model context window.

Installation

No need to clone the repository! Install directly:

uvx --from git+https://github.com/Rixmerz/bigcontext_mcp.git bigcontext-mcp

Configuration for Claude Desktop

Add to your ~/Library/Application Support/Claude/claude_desktop_config.json (macOS):

{ "mcpServers": { "bigcontext": { "command": "uvx", "args": [ "--from", "git+https://github.com/Rixmerz/bigcontext_mcp.git", "bigcontext-mcp" ] } } }

Restart Claude Desktop and the 31 BigContext tools will be available.

Overview

BigContext MCP allows Claude to work with extensive documents (books, manuals, research papers) by loading only relevant fragments per query, instead of the entire document. It uses automatic segmentation and TF-IDF keyword search to retrieve the most relevant content.

Key Features

Document Processing

  • Multi-format support: txt, md, PDF, EPUB, HTML

  • Automatic segmentation: Detects chapters, sections, and hierarchical structure

  • Efficient storage: SQLite with WAL mode for concurrent access

  • TF-IDF indexing: Fast semantic search without external embeddings

31 Domain-Agnostic Tools

Core Tools (5)

Tool

Description

ingest_document

Load, segment, and index a document

search_segment

Search for relevant segments using TF-IDF

get_metadata

Get metadata, structure, and top terms

list_documents

List all indexed documents

compare_segments

Compare two segments for themes and similarity

Epistemology Tools (4)

Tool

Description

get_source_capabilities

Analyze what a document CAN and CANNOT support

validate_claim

Check if a claim can be grounded in the source

get_epistemological_report

Complete analysis before scholarly claims

check_language_operation

Validate linguistic operations

Semantic Tools (4)

Tool

Description

detect_semantic_frames

Identify conceptual frameworks (causal, revelational, performative)

analyze_subdetermination

Distinguish indeterminacy from subdetermination

detect_performatives

Identify performative speech acts

check_anachronisms

Detect imported post-biblical concepts

Cognitive Tools (4)

Tool

Description

audit_cognitive_operations

Validate query and output compliance

detect_inference_violations

Scan for unauthorized connectors

get_permitted_operations

Get allowed operations per text type

generate_safe_fallback

Generate compliant response when violations detected

Extraction Validators (14)

Tool

Description

validate_literal_quote

Verify quoted text exists EXACTLY in source

validate_proximity

Check if segments are adjacent

get_adjacent_segments

Get segments within proximity constraint

identify_speaker

Detect who is speaking in a segment

detect_pattern_contamination

Detect pattern completion not in source

validate_extraction_schema

Validate pure data extraction

detect_narrative_voice

Distinguish voice types in text

validate_agency_execution

Distinguish EXECUTED vs REFERENCED actions

detect_text_genre

Identify genre based on structure

detect_divine_agency_without_speech

Find actions without speech verbs

detect_weak_quantifiers

Detect unsupported generalizations

validate_existential_response

Validate YES/NO question responses

build_document_vocabulary

Create closed vocabulary from document

validate_output_vocabulary

Check if output uses only source vocabulary

Domain-Agnostic Architecture

All extraction validators accept an optional DomainVocabulary parameter:

class DomainVocabulary(BaseModel): agents: list[str] | None = None # ['God', 'Lord'] or ['the Court'] addressees: list[str] | None = None # ['Lord'] or ['Your Honor'] oracle_formulas: list[str] | None = None # ['thus says the Lord'] praise_formulas: list[str] | None = None # ['praise the Lord'] action_verbs: list[str] | None = None # ['led', 'brought', 'created'] narration_verbs: list[str] | None = None # ['said', 'spoke', 'did'] state_verbs: list[str] | None = None # ['is', 'was', 'has been']

Example: Biblical Text

{ "agents": ["God", "Lord", "Moses"], "addressees": ["Lord", "God"], "action_verbs": ["led", "brought", "gave", "made", "created"], "narration_verbs": ["said", "spoke", "did", "made", "saw"], "oracle_formulas": ["thus says the Lord"], "praise_formulas": ["praise the Lord"] }
{ "agents": ["the Court", "Plaintiff", "Defendant"], "addressees": ["Your Honor"], "action_verbs": ["ruled", "ordered", "granted", "denied"], "narration_verbs": ["stated", "found", "held", "declared"], "oracle_formulas": ["the Court finds"], "praise_formulas": [] }

Usage Examples

1. Ingest a document

result = ingest_document( path="/path/to/document.pdf", title="My Document", chunk_size=2000, overlap=100 ) # Returns: document_id, total_segments, structure

2. Search for content

results = search_segment( query="agency without speech", document_id=1, limit=5 ) # Returns: matched segments with scores and snippets

3. Validate narrative voice

voice = detect_narrative_voice( segment_id=722, domain_vocabulary={ "agents": ["God", "Lord"], "addressees": ["Lord", "God"], "action_verbs": ["led", "brought", "gave", "made"] } ) # Returns: voice_type, confidence, evidence, is_retrospective

4. Validate agency execution

validation = validate_agency_execution( segment_id=762, divine_agent_patterns=["God", "Lord"] ) # Returns: is_executed, mode, agent, action, evidence

5. Detect text genre

genre = detect_text_genre( segment_id=1075, domain_vocabulary={ "agents": ["God", "He"], "oracle_formulas": ["thus says the Lord"], "praise_formulas": ["praise the Lord"] } ) # Returns: genre, confidence, indicators

Technical Stack

  • Python 3.11+ - Modern Python with type hints

  • FastMCP 2.x - MCP server framework with decorator-based tools

  • Pydantic 2.x - Schema validation

  • SQLite - Local storage with WAL mode

  • pdfplumber - PDF text extraction

  • ebooklib - EPUB support

  • beautifulsoup4 - HTML parsing

  • NLTK - NLP tokenization

Development

Local Installation

# Clone repository git clone https://github.com/Rixmerz/bigcontext_mcp.git cd bigcontext_mcp # Create virtual environment uv venv .venv source .venv/bin/activate # Install in development mode uv pip install -e . # Run server python -m bigcontext_mcp

Local Testing with Claude Desktop

{ "mcpServers": { "bigcontext": { "command": "uv", "args": [ "run", "--directory", "/path/to/bigcontext-mcp", "bigcontext-mcp" ] } } }

Architecture Highlights

Structural Pattern Matching

  • Pure structural patterns detect grammatical structure without vocabulary

  • Dynamic pattern generation combines structure + agent-provided vocabulary

  • Fallback mechanisms work with generic patterns when no vocabulary provided

No Hardcoded Assumptions

  • Zero biblical terms hardcoded in validation logic

  • Zero legal terms hardcoded

  • Zero religious assumptions

  • Agent provides ALL domain-specific vocabulary at runtime

Separation of Concerns

  • SPEECH_VERB_WHITELIST: 38 speech verbs (said, spoke, called, etc.)

  • CAUSAL_ACTION_VERBS: 90+ action verbs (caused, drove, made, etc.)

  • STRUCTURAL_NARRATIVE_VOICE_PATTERNS: Grammar-only patterns

  • DomainVocabulary: Agent-provided dynamic vocabulary

Changelog

V16: Python Migration (2026-01-10)

Complete rewrite from TypeScript to Python:

  • Framework: FastMCP 2.x with decorator-based tool registration

  • Distribution: uvx-ready (zero-clone install from GitHub)

  • Database: SQLite with WAL mode (same schema, compatible)

  • Validation: Pydantic replacing Zod

  • Total: 31 MCP tools migrated and tested

V15: Domain-Agnostic Extraction Validators

  • Expanded DomainVocabulary interface with 7 dynamic properties

  • Refactored all validators to accept optional vocabulary parameter

  • Zero hardcoded domain-specific terms

V14: Speech vs Action Verb Separation

  • Created SPEECH_VERB_WHITELIST (38 speech verbs)

  • Created CAUSAL_ACTION_VERBS (90+ action verbs)

V1-V13: Core Infrastructure

  • Multi-format document ingestion (txt, md, PDF, EPUB, HTML)

  • Automatic segmentation by chapters and sections

  • TF-IDF search implementation

  • SQLite storage with WAL mode

  • 27 extraction validation tools

License

MIT

Contributing

We welcome contributions! Areas of interest:

  • Additional domain vocabularies (legal, academic, literary)

  • New extraction validators

  • Performance optimizations

  • Documentation improvements

Support

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Rixmerz/bigcontext_mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server