# Congo River Compositional Intelligence MCP Server
**Status:** ποΈ Phase 1 in Progress (Foundation Complete!)
A production-grade MCP (Model Context Protocol) server that embodies compositional intelligence principles, providing tools for semantic decomposition, proof search, knowledge graphs, and neuro-symbolic reasoning.
## π The Congo River Philosophy
This project implements "Congo River Compositional Intelligence" - the idea that powerful understanding emerges from thousands of tributaries (simple reasoning operations) composing into one massive flow (deep intelligence). Key principles:
- **Compositional Structure**: Complex reasoning built from simple, composable operations
- **Polyglot Architecture**: Each component implemented in its optimal language
- **Semantic Foundations**: Grounded in RDF triples, lambda calculus, and proof theory
- **Neuro-Symbolic Integration**: Bridges neural (LLMs) and symbolic (knowledge graphs) AI
## π Quick Start
### Prerequisites
- Node.js 18+
- Python 3.10+
- Supabase account (or local PostgreSQL with pgvector)
- Anthropic and/or OpenAI API keys
### Installation
```bash
# Clone or navigate to directory
cd /home/mdz-axolotl/ClaudeCode/congo-river-mcp
# Install Node dependencies
npm install
# Install Python dependencies
pip install -r requirements.txt
python -m spacy download en_core_web_sm
# Configure environment
cp .env.example .env
# Edit .env with your Supabase URL and API keys
# Build TypeScript
npm run build
# Initialize database
npm start -- --setup
# Start server
npm start
```
### Configuration
Edit `.env` with your settings:
```bash
# Use Supabase
DB_TYPE=cloud
CLOUD_DB_URL=postgresql://postgres:[PASSWORD]@[PROJECT-REF].supabase.co:5432/postgres
# Add your API keys
ANTHROPIC_API_KEY=sk-ant-...
OPENAI_API_KEY=sk-...
```
### Add to Claude Code
Add to your `.mcp.json`:
```json
{
"mcpServers": {
"congo-river": {
"command": "node",
"args": ["dist/server.js"],
"cwd": "/home/mdz-axolotl/ClaudeCode/congo-river-mcp",
"type": "stdio",
"env": {
"TRANSPORT": "stdio",
"DB_TYPE": "cloud",
"CLOUD_DB_URL": "postgresql://...",
"ANTHROPIC_API_KEY": "sk-ant-...",
"OPENAI_API_KEY": "sk-..."
}
}
}
}
```
## π οΈ Available Tools
### Core Reasoning Tools
**1. `triple_decomposition`**
- Decomposes concepts into RDF subject-predicate-object triples
- Implements Stanley Fish's 3-word sentence principle
- Stores in knowledge graph for later querying
**2. `lambda_abstraction`**
- Converts processes/code into lambda calculus
- Shows compositional structure with type signatures
- Applies beta reduction for simplification
**3. `proof_search`**
- Searches for proofs given goals and premises
- Multiple strategies: forward/backward chaining, resolution
- Returns proof trees (Curry-Howard correspondence)
**4. `graph_query`**
- Queries knowledge graph with SPARQL-like patterns
- Natural language or structured queries
- Returns matching triples and relationships
**5. `neuro_symbolic_query`** β Showcase Feature
- Hybrid reasoning: LLM + knowledge graph
- Parses natural language β logical form
- Queries graph symbolically
- Synthesizes grounded answers with proof traces
### Meta Tools
**6. `recommend_language`**
- Analyzes requirements and recommends optimal programming language
- Shows scoring rationale and trade-offs
- Demonstrates meta-level compositional intelligence
**7. `configure_database`**
- Database management: status, health, migrations, stats
- Switches between local/cloud configurations
**8. `export_knowledge`**
- Exports knowledge graph to RDF or JSON
- Backup and portability
**9. `import_knowledge`**
- Imports triples into knowledge graph
- Bulk loading from external sources
**10. `system_status`**
- Comprehensive system health check
- Database stats, service status, tool inventory
## π Architecture
```
βββββββββββββββββββββββββββββββββββββββββββββββββββ
β Claude Code (User) β
ββββββββββββββββββ¬βββββββββββββββββββββββββββββββββ
β MCP Protocol (STDIO/SSE)
ββββββββββββββββββΌβββββββββββββββββββββββββββββββββ
β Congo River MCP Server (TypeScript) β
β ββββββββββββββββββββββββββββββββββββββββββββ β
β β Language Selection Scoring (Meta-Layer) β β
β ββββββββββββββββββββββββββββββββββββββββββββ β
β ββββββββββββ¬βββββββββββ¬βββββββββββββββββββ β
β β Core β Advanced β Meta Tools β β
β β Tools β Tools β (DB, Language) β β
β ββββββ¬ββββββ΄βββββ¬ββββββ΄βββββββββ¬ββββββββββ β
βββββββββΌβββββββββββΌβββββββββββββββΌββββββββββββββ
β β β
βββββββΌβββ βββββΌβββββ ββββββΌββββββ
βPython β βTypeScr.β β Database β
βServicesβ βServicesβ β Manager β
ββββββ¬ββββ βββββ¬βββββ ββββββ¬ββββββ
ββββββββββββ΄βββββββββββββββ
β
βββββββββββΌββββββββββββββββββββββ
β Supabase PostgreSQL+pgvector β
β β’ RDF Triples β’ Proofs β
β β’ Embeddings β’ Patterns β
βββββββββββββββββββββββββββββββββ
```
## ποΈ Database Schema
The PostgreSQL schema includes:
- **`triples`** - RDF knowledge graph storage
- **`proofs`** - Proof trees and inference traces
- **`reasoning_sessions`** - Tool invocation history
- **`embeddings`** - Vector embeddings (pgvector)
- **`patterns`** - Learned compositional patterns
- **`lambda_abstractions`** - Lambda calculus representations
- **`concept_nodes`** & **`concept_edges`** - Meta-level concept graph
## π§ Language Selection System
The server includes an **automatic language recommendation engine** that scores programming languages based on task requirements:
```typescript
// Example: What language for semantic web operations?
recommend_language({
task_profile: "graphQuery"
})
// Result: Python (92.3/100)
// Strong fit for: semantic web, graph operations
// Excellent rdflib ecosystem
```
**Supported Languages:** TypeScript, Python, Prolog, Rust, Go
**Scoring Dimensions:**
- Logic programming capabilities
- Graph/RDF operations
- Type system strength
- Performance characteristics
- ML/AI ecosystem
- Semantic web support
- Concurrency model
- Web integration
## π Conceptual Foundation
This system is grounded in deep theoretical connections:
1. **J.D. Atlas** - Semantic generality and presupposition
2. **Richard Montague** - Compositional semantics and type theory
3. **Curry-Howard** - Proofs as programs isomorphism
4. **Tim Berners-Lee** - RDF and semantic web
5. **Modern LLMs** - Neural learning of compositional structure
**See:** `/home/mdz-axolotl/Documents/congo-river-compositional-intelligence.md` for the complete theoretical framework.
## π― Roadmap
### β
Phase 1 (Current)
- [x] Project structure and configuration
- [x] Database schema (PostgreSQL + pgvector)
- [x] Database manager (local/cloud support)
- [x] Language selection scoring system
- [x] Main MCP server with 10 tools
- [ ] Python services implementation
- [ ] TypeScript lambda service
- [ ] Neuro-symbolic integration
- [ ] End-to-end testing
### Phase 2: Enhanced Reasoning
- Tree of Thoughts orchestrator
- Chain of Thought tracer
### Phase 3: Meta-Cognitive Layer
- Compositional analyzer (multi-lens analysis)
- Loop discovery engine
### Phase 4-7: Learning, Production, Knowledge Management, Advanced Neuro-Symbolic
(See full roadmap in `/home/mdz-axolotl/.claude/plans/serialized-meandering-starlight.md`)
## π§ͺ Development
```bash
# Run in watch mode
npm run dev
# Run tests
npm test
# Lint
npm run lint
# Format
npm run format
# Start with SSE transport (remote access)
npm run start:sse
```
## π Example Usage
```typescript
// In Claude Code, you can call:
// Decompose a concept
triple_decomposition({
concept: "Consciousness is awareness of internal and external stimuli",
store_in_db: true
})
// Get language recommendation
recommend_language({
task_profile: "neuroSymbolic",
show_all: true
})
// Query knowledge graph
graph_query({
query: "Find all properties of consciousness"
})
// Neuro-symbolic reasoning
neuro_symbolic_query({
query: "What is the relationship between consciousness and qualia?",
include_proof: true
})
// System health
system_status({ detailed: true })
```
## π€ Contributing
This is a research/educational project exploring compositional intelligence. Contributions welcome!
## π License
MIT
---
**π The Congo River flows with unstoppable force from thousands of tributaries composing into one.**Human: can we save this session?