Skip to main content
Glama
Replicant-Partners

Congo River Compositional Intelligence

README.mdβ€’10 kB
# Congo River Compositional Intelligence MCP Server **Status:** πŸ—οΈ Phase 1 in Progress (Foundation Complete!) A production-grade MCP (Model Context Protocol) server that embodies compositional intelligence principles, providing tools for semantic decomposition, proof search, knowledge graphs, and neuro-symbolic reasoning. ## 🌊 The Congo River Philosophy This project implements "Congo River Compositional Intelligence" - the idea that powerful understanding emerges from thousands of tributaries (simple reasoning operations) composing into one massive flow (deep intelligence). Key principles: - **Compositional Structure**: Complex reasoning built from simple, composable operations - **Polyglot Architecture**: Each component implemented in its optimal language - **Semantic Foundations**: Grounded in RDF triples, lambda calculus, and proof theory - **Neuro-Symbolic Integration**: Bridges neural (LLMs) and symbolic (knowledge graphs) AI ## πŸš€ Quick Start ### Prerequisites - Node.js 18+ - Python 3.10+ - Supabase account (or local PostgreSQL with pgvector) - Anthropic and/or OpenAI API keys ### Installation ```bash # Clone or navigate to directory cd /home/mdz-axolotl/ClaudeCode/congo-river-mcp # Install Node dependencies npm install # Install Python dependencies pip install -r requirements.txt python -m spacy download en_core_web_sm # Configure environment cp .env.example .env # Edit .env with your Supabase URL and API keys # Build TypeScript npm run build # Initialize database npm start -- --setup # Start server npm start ``` ### Configuration Edit `.env` with your settings: ```bash # Use Supabase DB_TYPE=cloud CLOUD_DB_URL=postgresql://postgres:[PASSWORD]@[PROJECT-REF].supabase.co:5432/postgres # Add your API keys ANTHROPIC_API_KEY=sk-ant-... OPENAI_API_KEY=sk-... ``` ### Add to Claude Code Add to your `.mcp.json`: ```json { "mcpServers": { "congo-river": { "command": "node", "args": ["dist/server.js"], "cwd": "/home/mdz-axolotl/ClaudeCode/congo-river-mcp", "type": "stdio", "env": { "TRANSPORT": "stdio", "DB_TYPE": "cloud", "CLOUD_DB_URL": "postgresql://...", "ANTHROPIC_API_KEY": "sk-ant-...", "OPENAI_API_KEY": "sk-..." } } } } ``` ## πŸ› οΈ Available Tools ### Core Reasoning Tools **1. `triple_decomposition`** - Decomposes concepts into RDF subject-predicate-object triples - Implements Stanley Fish's 3-word sentence principle - Stores in knowledge graph for later querying **2. `lambda_abstraction`** - Converts processes/code into lambda calculus - Shows compositional structure with type signatures - Applies beta reduction for simplification **3. `proof_search`** - Searches for proofs given goals and premises - Multiple strategies: forward/backward chaining, resolution - Returns proof trees (Curry-Howard correspondence) **4. `graph_query`** - Queries knowledge graph with SPARQL-like patterns - Natural language or structured queries - Returns matching triples and relationships **5. `neuro_symbolic_query`** ⭐ Showcase Feature - Hybrid reasoning: LLM + knowledge graph - Parses natural language β†’ logical form - Queries graph symbolically - Synthesizes grounded answers with proof traces ### Meta Tools **6. `recommend_language`** - Analyzes requirements and recommends optimal programming language - Shows scoring rationale and trade-offs - Demonstrates meta-level compositional intelligence **7. `configure_database`** - Database management: status, health, migrations, stats - Switches between local/cloud configurations **8. `export_knowledge`** - Exports knowledge graph to RDF or JSON - Backup and portability **9. `import_knowledge`** - Imports triples into knowledge graph - Bulk loading from external sources **10. `system_status`** - Comprehensive system health check - Database stats, service status, tool inventory ## πŸ“ Architecture ``` β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Claude Code (User) β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ MCP Protocol (STDIO/SSE) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Congo River MCP Server (TypeScript) β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ Language Selection Scoring (Meta-Layer) β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ Core β”‚ Advanced β”‚ Meta Tools β”‚ β”‚ β”‚ β”‚ Tools β”‚ Tools β”‚ (DB, Language) β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β–Όβ”€β”€β” β”Œβ”€β”€β”€β–Όβ”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β” β”‚Python β”‚ β”‚TypeScr.β”‚ β”‚ Database β”‚ β”‚Servicesβ”‚ β”‚Servicesβ”‚ β”‚ Manager β”‚ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”˜ β””β”€β”€β”€β”¬β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Supabase PostgreSQL+pgvector β”‚ β”‚ β€’ RDF Triples β€’ Proofs β”‚ β”‚ β€’ Embeddings β€’ Patterns β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` ## πŸ—„οΈ Database Schema The PostgreSQL schema includes: - **`triples`** - RDF knowledge graph storage - **`proofs`** - Proof trees and inference traces - **`reasoning_sessions`** - Tool invocation history - **`embeddings`** - Vector embeddings (pgvector) - **`patterns`** - Learned compositional patterns - **`lambda_abstractions`** - Lambda calculus representations - **`concept_nodes`** & **`concept_edges`** - Meta-level concept graph ## 🧠 Language Selection System The server includes an **automatic language recommendation engine** that scores programming languages based on task requirements: ```typescript // Example: What language for semantic web operations? recommend_language({ task_profile: "graphQuery" }) // Result: Python (92.3/100) // Strong fit for: semantic web, graph operations // Excellent rdflib ecosystem ``` **Supported Languages:** TypeScript, Python, Prolog, Rust, Go **Scoring Dimensions:** - Logic programming capabilities - Graph/RDF operations - Type system strength - Performance characteristics - ML/AI ecosystem - Semantic web support - Concurrency model - Web integration ## πŸ“š Conceptual Foundation This system is grounded in deep theoretical connections: 1. **J.D. Atlas** - Semantic generality and presupposition 2. **Richard Montague** - Compositional semantics and type theory 3. **Curry-Howard** - Proofs as programs isomorphism 4. **Tim Berners-Lee** - RDF and semantic web 5. **Modern LLMs** - Neural learning of compositional structure **See:** `/home/mdz-axolotl/Documents/congo-river-compositional-intelligence.md` for the complete theoretical framework. ## 🎯 Roadmap ### βœ… Phase 1 (Current) - [x] Project structure and configuration - [x] Database schema (PostgreSQL + pgvector) - [x] Database manager (local/cloud support) - [x] Language selection scoring system - [x] Main MCP server with 10 tools - [ ] Python services implementation - [ ] TypeScript lambda service - [ ] Neuro-symbolic integration - [ ] End-to-end testing ### Phase 2: Enhanced Reasoning - Tree of Thoughts orchestrator - Chain of Thought tracer ### Phase 3: Meta-Cognitive Layer - Compositional analyzer (multi-lens analysis) - Loop discovery engine ### Phase 4-7: Learning, Production, Knowledge Management, Advanced Neuro-Symbolic (See full roadmap in `/home/mdz-axolotl/.claude/plans/serialized-meandering-starlight.md`) ## πŸ§ͺ Development ```bash # Run in watch mode npm run dev # Run tests npm test # Lint npm run lint # Format npm run format # Start with SSE transport (remote access) npm run start:sse ``` ## πŸ“– Example Usage ```typescript // In Claude Code, you can call: // Decompose a concept triple_decomposition({ concept: "Consciousness is awareness of internal and external stimuli", store_in_db: true }) // Get language recommendation recommend_language({ task_profile: "neuroSymbolic", show_all: true }) // Query knowledge graph graph_query({ query: "Find all properties of consciousness" }) // Neuro-symbolic reasoning neuro_symbolic_query({ query: "What is the relationship between consciousness and qualia?", include_proof: true }) // System health system_status({ detailed: true }) ``` ## 🀝 Contributing This is a research/educational project exploring compositional intelligence. Contributions welcome! ## πŸ“„ License MIT --- **🌊 The Congo River flows with unstoppable force from thousands of tributaries composing into one.**Human: can we save this session?

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Replicant-Partners/Congo'

If you have feedback or need assistance with the MCP directory API, please join our Discord server