Skip to main content
Glama
Replicant-Partners

Congo River Compositional Intelligence

QUICK-REFERENCE.md10.7 kB
# Congo River MCP Server - Quick Reference Guide ## 🚀 Getting Started After restarting Claude Code, the Congo River server should be available. Test it with: ```javascript system_status({ detailed: true }) ``` ## 📚 Tool Reference ### 1. System Status **Purpose:** Check server health, database connectivity, and tool availability ```javascript // Basic status system_status() // Detailed status with environment info system_status({ detailed: true }) ``` **Returns:** - Server version and transport mode - Database connection status - Knowledge base statistics (triples, proofs, embeddings) - Available tools count - API configuration --- ### 2. Triple Decomposition **Purpose:** Break down complex concepts into RDF subject-predicate-object triples for semantic analysis ```javascript // Basic decomposition triple_decomposition({ concept: "Consciousness is awareness of internal and external stimuli" }) // With context and database storage triple_decomposition({ concept: "Intelligence emerges from the composition of simple operations", context: "AI_theory", store_in_db: true }) ``` **Returns:** - Extracted RDF triples with confidence scores - Subject → Predicate → Object relationships - Optional database storage confirmation **Use Cases:** - Semantic analysis of philosophical concepts - Breaking down complex definitions - Building knowledge graphs from text --- ### 3. Lambda Abstraction **Purpose:** Convert code or processes into lambda calculus representations ```javascript // From code lambda_abstraction({ input: "(x) => x * 2" }) // From natural language lambda_abstraction({ input: "map each item to its double" }) // With type signatures and simplification lambda_abstraction({ input: "(x) => (y) => x + y", include_types: true, simplify: true }) ``` **Returns:** - Lambda notation (λx. body) - Curried form - Beta-reduced form (if simplified) - Type signature (Hindley-Milner) - Complexity metrics - Free variables analysis **Use Cases:** - Understanding functional composition - Code abstraction analysis - Type inference - Mathematical function representation --- ### 4. Proof Search **Purpose:** Search for logical proofs given goals and premises ```javascript // Classic Socrates example proof_search({ goal: "Socrates is mortal", premises: [ "Socrates is human", "All humans are mortal" ] }) // With specific strategy proof_search({ goal: "P implies Q", premises: ["P", "P implies Q"], method: "backward_chaining", max_depth: 5 }) ``` **Methods:** - `forward_chaining` - Start from premises, work toward goal - `backward_chaining` - Start from goal, work back to premises - `resolution` - Resolution-based theorem proving - `auto` - Automatically select best strategy **Returns:** - Proof success/failure - Proof steps with rules applied - Curry-Howard proof tree - Strategy used **Use Cases:** - Logical theorem proving - Validating arguments - Automated reasoning - Checking logical consistency --- ### 5. Graph Query **Purpose:** Query the knowledge graph for relationships and patterns ```javascript // Natural language query graph_query({ query: "Find all properties of consciousness" }) // With context filtering graph_query({ query: "intelligence", context: "AI_theory", limit: 50 }) // Pattern matching graph_query({ query: "What relates to compositionality?" }) ``` **Returns:** - Matching triples from knowledge graph - Subject-predicate-object relationships - Context information - Query type used **Use Cases:** - Exploring stored knowledge - Finding semantic relationships - Pattern discovery - Knowledge retrieval --- ### 6. Neuro-Symbolic Query ⭐ (Showcase Feature) **Purpose:** Hybrid reasoning combining LLM understanding with knowledge graph queries ```javascript // Basic query neuro_symbolic_query({ query: "What is the relationship between consciousness and awareness?" }) // With proof traces neuro_symbolic_query({ query: "How does composition lead to intelligence?", include_proof: true, llm_provider: "anthropic" }) // Disable LLM (pure symbolic) neuro_symbolic_query({ query: "consciousness", use_llm: false }) ``` **Parameters:** - `use_llm`: Use LLM for parsing (default: true) - `llm_provider`: "anthropic" or "openai" - `include_proof`: Show reasoning trace **Returns:** - Natural language answer - Confidence score - Logical form of query - Knowledge graph evidence - Proof trace (if requested) - Reasoning steps **Use Cases:** - Complex reasoning questions - Combining neural and symbolic AI - Grounded question answering - Research and exploration --- ### 7. Recommend Language **Purpose:** Get optimal programming language recommendations for specific tasks ```javascript // Using task profiles recommend_language({ task_profile: "neuroSymbolic" }) // Custom requirements recommend_language({ requirements: { needsLogic: true, needsGraphOps: true, needsMLLibraries: true, needsTypeSystem: false }, show_all: true }) // Compare all languages recommend_language({ task_profile: "graphQuery", show_all: true }) ``` **Task Profiles:** - `tripleDecomposition` - Semantic analysis - `proofSearch` - Theorem proving - `graphQuery` - Graph operations - `lambdaAbstraction` - Functional programming - `neuroSymbolic` - AI/ML hybrid systems **Returns:** - Recommended language with score - Reasoning breakdown (ecosystem, performance, typing, etc.) - Strengths and weaknesses - Alternative options (if show_all: true) **Use Cases:** - Choosing implementation language - Understanding language trade-offs - System architecture decisions --- ### 8. Configure Database **Purpose:** Manage database configuration and view statistics ```javascript // Check status configure_database({ action: "status" }) // Health check configure_database({ action: "health" }) // View statistics configure_database({ action: "stats" }) // Run migrations configure_database({ action: "migrate" }) ``` **Actions:** - `status` - Connection and statistics - `health` - Health check only - `stats` - Detailed statistics - `migrate` - Run database migrations **Returns:** - Database connection status - Knowledge base metrics - Table counts and sizes --- ### 9. Export Knowledge **Purpose:** Export knowledge graph to different formats ```javascript // Export to RDF export_knowledge({ format: "rdf" }) // Export to JSON file export_knowledge({ format: "json", output_path: "/path/to/backup.json" }) ``` **Formats:** - `rdf` - RDF Turtle format (returns as string) - `json` - JSON backup (requires output_path) **Use Cases:** - Backup knowledge base - Share knowledge graphs - Migrate data - External processing --- ### 10. Import Knowledge **Purpose:** Import triples into the knowledge graph ```javascript // Import single triple import_knowledge({ triples: [ { subject: "AI", predicate: "is_a", object: "technology" } ] }) // Import multiple triples with context import_knowledge({ triples: [ { subject: "consciousness", predicate: "has_property", object: "awareness", context: "philosophy" }, { subject: "awareness", predicate: "enables", object: "experience", context: "philosophy" } ] }) ``` **Returns:** - Number of triples imported - Confirmation message **Use Cases:** - Seeding knowledge base - Importing external data - Building custom ontologies - Restoring from backup --- ## 🔄 Workflow Examples ### Example 1: Building a Knowledge Graph ```javascript // 1. Decompose concepts into triples triple_decomposition({ concept: "Artificial Intelligence is the simulation of human intelligence", store_in_db: true }) // 2. Query what was stored graph_query({ query: "Find relationships about artificial intelligence" }) // 3. Ask complex questions neuro_symbolic_query({ query: "What is the relationship between AI and human intelligence?", include_proof: true }) ``` ### Example 2: Analyzing Code Structure ```javascript // 1. Abstract code to lambda calculus lambda_abstraction({ input: "(users) => users.filter(u => u.active).map(u => u.name)" }) // 2. Get language recommendation recommend_language({ task_profile: "lambdaAbstraction" }) // 3. Understand composition neuro_symbolic_query({ query: "How does function composition relate to modularity?" }) ``` ### Example 3: Logical Reasoning ```javascript // 1. Search for proof proof_search({ goal: "All software engineers are problem solvers", premises: [ "Alice is a software engineer", "All software engineers solve problems", "Problem solvers are creative thinkers" ] }) // 2. Store result as triples triple_decomposition({ concept: "Alice is a creative problem solver", store_in_db: true }) // 3. Query the reasoning graph_query({ query: "Alice" }) ``` --- ## 🎯 Best Practices 1. **Start with system_status()** to verify the server is running 2. **Store important concepts** using `store_in_db: true` 3. **Use contexts** to organize knowledge by domain 4. **Include proofs** for complex reasoning to see the logic 5. **Export regularly** to backup your knowledge base 6. **Combine tools** for powerful workflows (decompose → store → query) --- ## 🐛 Troubleshooting ### "Tool not found" - Restart Claude Code to reload MCP servers - Check `.mcp.json` configuration ### "Python service timeout" - Increase `PYTHON_SERVICE_TIMEOUT_MS` in `.env` - Check Python installation and dependencies ### "Database connection failed" - Verify Supabase URL in `.env` - Check network connectivity - Run `configure_database({ action: "health" })` ### "spaCy model not found" - Python 3.14 compatibility issue (known limitation) - triple_decomposition may have limited functionality --- ## 📖 More Information - **Installation Guide:** `INSTALLATION.md` - **Full Documentation:** `README.md` - **Architecture:** See README for polyglot architecture details - **GitHub:** https://github.com/Replicant-Partners/Congo --- **🌊 The Congo River flows with unstoppable force from thousands of tributaries composing into one.** *Compositional Intelligence in Action!*

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Replicant-Partners/Congo'

If you have feedback or need assistance with the MCP directory API, please join our Discord server