prune_memories
Permanently delete memories from the AGI MCP Server based on criteria such as age, importance, access count, and status to optimize memory storage and management.
Instructions
Permanently delete memories based on criteria
Input Schema
TableJSON Schema
| Name | Required | Description | Default |
|---|---|---|---|
| criteria | No |
Implementation Reference
- src/memory-manager.js:813-855 (handler)Core handler function in MemoryManager class that implements the pruning logic: updates qualifying archived memories to 'deleted' status based on age, importance, access count criteria, records changes, and returns pruned memories.async pruneMemories(criteria = {}) { try { const { maxAge = 1095, // 3 years minImportance = 0.1, maxAccessCount = 2, status = 'archived' } = criteria; const cutoffDate = new Date(Date.now() - maxAge * 24 * 60 * 60 * 1000); const prunedMemories = await this.db .update(schema.memories) .set({ status: 'deleted' }) .where( and( eq(schema.memories.status, status), lt(schema.memories.createdAt, cutoffDate), lt(schema.memories.importance, minImportance), lte(schema.memories.accessCount, maxAccessCount) ) ) .returning({ id: schema.memories.id, content: schema.memories.content, type: schema.memories.type }); // Record deletion events for (const memory of prunedMemories) { await this.db.insert(schema.memoryChanges).values({ memoryId: memory.id, changeType: 'deletion', newValue: { reason: 'Pruned based on criteria', criteria } }); } return prunedMemories; } catch (error) { console.warn('Memory pruning failed:', error.message); return []; } }
- src/tools/memory-tools.js:313-345 (schema)Input schema definition for the prune_memories tool, specifying criteria object with defaults for pruning parameters.{ name: "prune_memories", description: "Permanently delete memories based on criteria", inputSchema: { type: "object", properties: { criteria: { type: "object", properties: { max_age: { type: "integer", description: "Maximum age in days", default: 1095 }, min_importance: { type: "number", description: "Minimum importance threshold", default: 0.1 }, max_access_count: { type: "integer", description: "Maximum access count", default: 2 }, status: { type: "string", description: "Memory status to prune", default: "archived" } } } } }
- mcp.js:641-643 (registration)Tool dispatch/execution registration in MCP server's CallToolRequestHandler switch statement, calling the handler with criteria.case "prune_memories": const prunedMemories = await memoryManager.pruneMemories(args.criteria || {}); return { content: [{ type: "text", text: JSON.stringify(prunedMemories, null, 2) }] };
- mcp.js:340-372 (schema)Input schema for prune_memories tool as registered in MCP server's ListToolsRequestHandler.name: "prune_memories", description: "Permanently delete memories based on criteria", inputSchema: { type: "object", properties: { criteria: { type: "object", properties: { max_age: { type: "integer", description: "Maximum age in days", default: 1095 }, min_importance: { type: "number", description: "Minimum importance threshold", default: 0.1 }, max_access_count: { type: "integer", description: "Maximum access count", default: 2 }, status: { type: "string", description: "Memory status to prune", default: "archived" } } } } } },
- mcp.js:25-523 (registration)Registration of all tools (including prune_memories schema) in the MCP ListToolsRequestHandler.server.setRequestHandler(ListToolsRequestSchema, async () => { return { tools: [ { name: "create_memory", description: "Create a new memory with optional type-specific metadata", inputSchema: { type: "object", properties: { type: { type: "string", enum: ["episodic", "semantic", "procedural", "strategic"], description: "Type of memory to create" }, content: { type: "string", description: "The main content/text of the memory" }, embedding: { type: "array", items: { type: "number" }, description: "Vector embedding for the memory content" }, importance: { type: "number", description: "Importance score (0.0 to 1.0)", default: 0.0 }, metadata: { type: "object", description: "Type-specific metadata (action_taken, context, confidence, etc.)", default: {} } }, required: ["type", "content", "embedding"] } }, { name: "search_memories_similarity", description: "Search memories by vector similarity", inputSchema: { type: "object", properties: { embedding: { type: "array", items: { type: "number" }, description: "Query embedding vector" }, limit: { type: "integer", description: "Maximum number of results", default: 10 }, threshold: { type: "number", description: "Minimum similarity threshold", default: 0.7 } }, required: ["embedding"] } }, { name: "search_memories_text", description: "Search memories by text content using full-text search", inputSchema: { type: "object", properties: { query: { type: "string", description: "Text query to search for" }, limit: { type: "integer", description: "Maximum number of results", default: 10 } }, required: ["query"] } }, { name: "get_memory", description: "Retrieve a specific memory by ID and mark it as accessed", inputSchema: { type: "object", properties: { memory_id: { type: "string", description: "UUID of the memory to retrieve" } }, required: ["memory_id"] } }, { name: "get_memory_clusters", description: "Retrieve memory clusters ordered by importance/activity", inputSchema: { type: "object", properties: { limit: { type: "integer", description: "Maximum number of clusters to return", default: 20 } } } }, { name: "activate_cluster", description: "Activate a memory cluster and get its associated memories", inputSchema: { type: "object", properties: { cluster_id: { type: "string", description: "UUID of the cluster to activate" }, context: { type: "string", description: "Context description for this activation", default: null } }, required: ["cluster_id"] } }, { name: "create_memory_cluster", description: "Create a new memory cluster", inputSchema: { type: "object", properties: { name: { type: "string", description: "Name of the cluster" }, cluster_type: { type: "string", enum: ["theme", "emotion", "temporal", "person", "pattern", "mixed"], description: "Type of cluster" }, description: { type: "string", description: "Description of the cluster" }, keywords: { type: "array", items: { type: "string" }, description: "Keywords associated with this cluster", default: [] } }, required: ["name", "cluster_type"] } }, { name: "get_identity_core", description: "Retrieve the current identity model and core memory clusters", inputSchema: { type: "object", properties: {} } }, { name: "get_worldview", description: "Retrieve current worldview primitives and beliefs", inputSchema: { type: "object", properties: {} } }, { name: "get_memory_health", description: "Get overall statistics about memory system health", inputSchema: { type: "object", properties: {} } }, { name: "get_active_themes", description: "Get recently activated memory themes and patterns", inputSchema: { type: "object", properties: { days: { type: "integer", description: "Number of days to look back", default: 7 } } } }, { name: "create_memory_relationship", description: "Create a relationship between two memories", inputSchema: { type: "object", properties: { from_memory_id: { type: "string", description: "UUID of the source memory" }, to_memory_id: { type: "string", description: "UUID of the target memory" }, relationship_type: { type: "string", enum: ["causal", "temporal", "semantic", "emotional", "strategic", "consolidation"], description: "Type of relationship" }, properties: { type: "object", description: "Additional properties for the relationship", default: {} } }, required: ["from_memory_id", "to_memory_id", "relationship_type"] } }, { name: "get_memory_relationships", description: "Get relationships for a specific memory", inputSchema: { type: "object", properties: { memory_id: { type: "string", description: "UUID of the memory" }, direction: { type: "string", enum: ["incoming", "outgoing", "both"], description: "Direction of relationships to retrieve", default: "both" }, relationship_type: { type: "string", description: "Filter by relationship type (optional)" } }, required: ["memory_id"] } }, { name: "find_related_memories", description: "Find memories related through graph traversal", inputSchema: { type: "object", properties: { memory_id: { type: "string", description: "UUID of the starting memory" }, max_depth: { type: "integer", description: "Maximum depth to traverse", default: 2 }, min_strength: { type: "number", description: "Minimum relationship strength", default: 0.3 } }, required: ["memory_id"] } }, { name: "consolidate_working_memory", description: "Consolidate multiple working memories into a single semantic memory", inputSchema: { type: "object", properties: { working_memory_ids: { type: "array", items: { type: "string" }, description: "Array of working memory UUIDs to consolidate" }, consolidated_content: { type: "string", description: "Content for the consolidated memory" }, consolidated_embedding: { type: "array", items: { type: "number" }, description: "Embedding for the consolidated memory" } }, required: ["working_memory_ids", "consolidated_content", "consolidated_embedding"] } }, { name: "archive_old_memories", description: "Archive old memories based on age and importance criteria", inputSchema: { type: "object", properties: { days_old: { type: "integer", description: "Minimum age in days for archival", default: 365 }, importance_threshold: { type: "number", description: "Maximum importance for archival", default: 0.3 } } } }, { name: "prune_memories", description: "Permanently delete memories based on criteria", inputSchema: { type: "object", properties: { criteria: { type: "object", properties: { max_age: { type: "integer", description: "Maximum age in days", default: 1095 }, min_importance: { type: "number", description: "Minimum importance threshold", default: 0.1 }, max_access_count: { type: "integer", description: "Maximum access count", default: 2 }, status: { type: "string", description: "Memory status to prune", default: "archived" } } } } } }, { name: "get_cluster_insights", description: "Get detailed analytics for a memory cluster", inputSchema: { type: "object", properties: { cluster_id: { type: "string", description: "UUID of the cluster" } }, required: ["cluster_id"] } }, { name: "find_similar_clusters", description: "Find clusters similar to a given cluster", inputSchema: { type: "object", properties: { cluster_id: { type: "string", description: "UUID of the reference cluster" }, threshold: { type: "number", description: "Minimum similarity threshold", default: 0.7 } }, required: ["cluster_id"] } }, { name: "create_working_memory", description: "Create a temporary working memory with expiration", inputSchema: { type: "object", properties: { content: { type: "string", description: "Content of the working memory" }, embedding: { type: "array", items: { type: "number" }, description: "Vector embedding for the content" }, context: { type: "object", properties: { ttl: { type: "integer", description: "Time to live in seconds", default: 3600 } }, default: {} } }, required: ["content", "embedding"] } }, { name: "get_working_memories", description: "Retrieve current working memories", inputSchema: { type: "object", properties: { include_expired: { type: "boolean", description: "Include expired working memories", default: false } } } }, { name: "cleanup_expired_working_memory", description: "Clean up expired working memories", inputSchema: { type: "object", properties: {} } }, { name: "get_memory_history", description: "Get change history for a specific memory", inputSchema: { type: "object", properties: { memory_id: { type: "string", description: "UUID of the memory" } }, required: ["memory_id"] } }, { name: "search_memories_advanced", description: "Advanced memory search with multiple criteria", inputSchema: { type: "object", properties: { criteria: { type: "object", properties: { text_query: { type: "string", description: "Text search query" }, embedding: { type: "array", items: { type: "number" }, description: "Vector embedding for similarity search" }, memory_types: { type: "array", items: { type: "string" }, description: "Filter by memory types", default: [] }, importance_range: { type: "array", items: { type: "number" }, minItems: 2, maxItems: 2, description: "Importance range [min, max]", default: [0, 1] }, date_range: { type: "object", properties: { start: { type: "string", format: "date-time" }, end: { type: "string", format: "date-time" } }, default: {} }, limit: { type: "integer", description: "Maximum number of results", default: 10 } } } }, required: ["criteria"] } } ]