Skip to main content
Glama

get_worldview

Retrieve current worldview primitives and beliefs to understand an AI system's foundational knowledge and perspectives for continuity across conversations.

Instructions

Retrieve current worldview primitives and beliefs

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault

No arguments

Implementation Reference

  • Core implementation of getWorldviewPrimitives() method that retrieves worldview primitives from the database table ordered by confidence and stability score.
    async getWorldviewPrimitives() { try { const primitives = await this.db .select() .from(schema.worldviewPrimitives) .orderBy( desc(schema.worldviewPrimitives.confidence), desc(schema.worldviewPrimitives.stabilityScore) ); return primitives; } catch (error) { console.error('Error getting worldview primitives:', error); throw error; } }
  • mcp.js:589-591 (handler)
    MCP server dispatch handler for the 'get_worldview' tool, which calls memoryManager.getWorldviewPrimitives() and formats the JSON response.
    case "get_worldview": const worldview = await memoryManager.getWorldviewPrimitives(); return { content: [{ type: "text", text: JSON.stringify(worldview, null, 2) }] };
  • Tool schema definition in the ListTools response handler, defining name, description, and empty input schema.
    { name: "get_worldview", description: "Retrieve current worldview primitives and beliefs", inputSchema: { type: "object", properties: {} } },
  • Tool schema definition in memoryTools export array.
    { name: "get_worldview", description: "Retrieve current worldview primitives and beliefs", inputSchema: { type: "object", properties: {} } },
  • mcp.js:26-523 (registration)
    Registration of all tools including 'get_worldview' in the MCP server's ListToolsRequestSchema handler.
    return { tools: [ { name: "create_memory", description: "Create a new memory with optional type-specific metadata", inputSchema: { type: "object", properties: { type: { type: "string", enum: ["episodic", "semantic", "procedural", "strategic"], description: "Type of memory to create" }, content: { type: "string", description: "The main content/text of the memory" }, embedding: { type: "array", items: { type: "number" }, description: "Vector embedding for the memory content" }, importance: { type: "number", description: "Importance score (0.0 to 1.0)", default: 0.0 }, metadata: { type: "object", description: "Type-specific metadata (action_taken, context, confidence, etc.)", default: {} } }, required: ["type", "content", "embedding"] } }, { name: "search_memories_similarity", description: "Search memories by vector similarity", inputSchema: { type: "object", properties: { embedding: { type: "array", items: { type: "number" }, description: "Query embedding vector" }, limit: { type: "integer", description: "Maximum number of results", default: 10 }, threshold: { type: "number", description: "Minimum similarity threshold", default: 0.7 } }, required: ["embedding"] } }, { name: "search_memories_text", description: "Search memories by text content using full-text search", inputSchema: { type: "object", properties: { query: { type: "string", description: "Text query to search for" }, limit: { type: "integer", description: "Maximum number of results", default: 10 } }, required: ["query"] } }, { name: "get_memory", description: "Retrieve a specific memory by ID and mark it as accessed", inputSchema: { type: "object", properties: { memory_id: { type: "string", description: "UUID of the memory to retrieve" } }, required: ["memory_id"] } }, { name: "get_memory_clusters", description: "Retrieve memory clusters ordered by importance/activity", inputSchema: { type: "object", properties: { limit: { type: "integer", description: "Maximum number of clusters to return", default: 20 } } } }, { name: "activate_cluster", description: "Activate a memory cluster and get its associated memories", inputSchema: { type: "object", properties: { cluster_id: { type: "string", description: "UUID of the cluster to activate" }, context: { type: "string", description: "Context description for this activation", default: null } }, required: ["cluster_id"] } }, { name: "create_memory_cluster", description: "Create a new memory cluster", inputSchema: { type: "object", properties: { name: { type: "string", description: "Name of the cluster" }, cluster_type: { type: "string", enum: ["theme", "emotion", "temporal", "person", "pattern", "mixed"], description: "Type of cluster" }, description: { type: "string", description: "Description of the cluster" }, keywords: { type: "array", items: { type: "string" }, description: "Keywords associated with this cluster", default: [] } }, required: ["name", "cluster_type"] } }, { name: "get_identity_core", description: "Retrieve the current identity model and core memory clusters", inputSchema: { type: "object", properties: {} } }, { name: "get_worldview", description: "Retrieve current worldview primitives and beliefs", inputSchema: { type: "object", properties: {} } }, { name: "get_memory_health", description: "Get overall statistics about memory system health", inputSchema: { type: "object", properties: {} } }, { name: "get_active_themes", description: "Get recently activated memory themes and patterns", inputSchema: { type: "object", properties: { days: { type: "integer", description: "Number of days to look back", default: 7 } } } }, { name: "create_memory_relationship", description: "Create a relationship between two memories", inputSchema: { type: "object", properties: { from_memory_id: { type: "string", description: "UUID of the source memory" }, to_memory_id: { type: "string", description: "UUID of the target memory" }, relationship_type: { type: "string", enum: ["causal", "temporal", "semantic", "emotional", "strategic", "consolidation"], description: "Type of relationship" }, properties: { type: "object", description: "Additional properties for the relationship", default: {} } }, required: ["from_memory_id", "to_memory_id", "relationship_type"] } }, { name: "get_memory_relationships", description: "Get relationships for a specific memory", inputSchema: { type: "object", properties: { memory_id: { type: "string", description: "UUID of the memory" }, direction: { type: "string", enum: ["incoming", "outgoing", "both"], description: "Direction of relationships to retrieve", default: "both" }, relationship_type: { type: "string", description: "Filter by relationship type (optional)" } }, required: ["memory_id"] } }, { name: "find_related_memories", description: "Find memories related through graph traversal", inputSchema: { type: "object", properties: { memory_id: { type: "string", description: "UUID of the starting memory" }, max_depth: { type: "integer", description: "Maximum depth to traverse", default: 2 }, min_strength: { type: "number", description: "Minimum relationship strength", default: 0.3 } }, required: ["memory_id"] } }, { name: "consolidate_working_memory", description: "Consolidate multiple working memories into a single semantic memory", inputSchema: { type: "object", properties: { working_memory_ids: { type: "array", items: { type: "string" }, description: "Array of working memory UUIDs to consolidate" }, consolidated_content: { type: "string", description: "Content for the consolidated memory" }, consolidated_embedding: { type: "array", items: { type: "number" }, description: "Embedding for the consolidated memory" } }, required: ["working_memory_ids", "consolidated_content", "consolidated_embedding"] } }, { name: "archive_old_memories", description: "Archive old memories based on age and importance criteria", inputSchema: { type: "object", properties: { days_old: { type: "integer", description: "Minimum age in days for archival", default: 365 }, importance_threshold: { type: "number", description: "Maximum importance for archival", default: 0.3 } } } }, { name: "prune_memories", description: "Permanently delete memories based on criteria", inputSchema: { type: "object", properties: { criteria: { type: "object", properties: { max_age: { type: "integer", description: "Maximum age in days", default: 1095 }, min_importance: { type: "number", description: "Minimum importance threshold", default: 0.1 }, max_access_count: { type: "integer", description: "Maximum access count", default: 2 }, status: { type: "string", description: "Memory status to prune", default: "archived" } } } } } }, { name: "get_cluster_insights", description: "Get detailed analytics for a memory cluster", inputSchema: { type: "object", properties: { cluster_id: { type: "string", description: "UUID of the cluster" } }, required: ["cluster_id"] } }, { name: "find_similar_clusters", description: "Find clusters similar to a given cluster", inputSchema: { type: "object", properties: { cluster_id: { type: "string", description: "UUID of the reference cluster" }, threshold: { type: "number", description: "Minimum similarity threshold", default: 0.7 } }, required: ["cluster_id"] } }, { name: "create_working_memory", description: "Create a temporary working memory with expiration", inputSchema: { type: "object", properties: { content: { type: "string", description: "Content of the working memory" }, embedding: { type: "array", items: { type: "number" }, description: "Vector embedding for the content" }, context: { type: "object", properties: { ttl: { type: "integer", description: "Time to live in seconds", default: 3600 } }, default: {} } }, required: ["content", "embedding"] } }, { name: "get_working_memories", description: "Retrieve current working memories", inputSchema: { type: "object", properties: { include_expired: { type: "boolean", description: "Include expired working memories", default: false } } } }, { name: "cleanup_expired_working_memory", description: "Clean up expired working memories", inputSchema: { type: "object", properties: {} } }, { name: "get_memory_history", description: "Get change history for a specific memory", inputSchema: { type: "object", properties: { memory_id: { type: "string", description: "UUID of the memory" } }, required: ["memory_id"] } }, { name: "search_memories_advanced", description: "Advanced memory search with multiple criteria", inputSchema: { type: "object", properties: { criteria: { type: "object", properties: { text_query: { type: "string", description: "Text search query" }, embedding: { type: "array", items: { type: "number" }, description: "Vector embedding for similarity search" }, memory_types: { type: "array", items: { type: "string" }, description: "Filter by memory types", default: [] }, importance_range: { type: "array", items: { type: "number" }, minItems: 2, maxItems: 2, description: "Importance range [min, max]", default: [0, 1] }, date_range: { type: "object", properties: { start: { type: "string", format: "date-time" }, end: { type: "string", format: "date-time" } }, default: {} }, limit: { type: "integer", description: "Maximum number of results", default: 10 } } } }, required: ["criteria"] } } ]

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/QuixiAI/agi-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server