# AI Forge Studio
## RTX 50-Series Edition




**AI Forge Studio** is a professional desktop application designed specifically for NVIDIA RTX 50-Series GPU users. It combines cutting-edge artificial intelligence with advanced graphics processing to deliver high-quality image generation, real-time hardware monitoring, and AI model management.
π **Official Website:** [aiforgestudio.net](https://aiforgestudio.net)
π **Documentation:** [aiforgestudio.net/docs](https://aiforgestudio.net/docs/getting-started.html)
πΎ **Download:** [aiforgestudio.net/#download](https://aiforgestudio.net/#download)
---
## π Features
### Core Capabilities
- **Real-Time Hardware Monitoring**
- GPU utilization, temperature, and power consumption
- VRAM usage tracking
- Multi-GPU support
- CPU and RAM monitoring
- Live performance graphs
- **AI Model Management**
- Support for multiple model formats (SafeTensors, GGUF, ONNX, PyTorch)
- Text-to-Image generation (Stable Diffusion, SDXL)
- Image upscaling (Real-ESRGAN)
- LLM integration
- One-click model loading and optimization
- HuggingFace model import
- **Advanced Rendering Engine**
- 4K+ real-time preview
- NVIDIA DLSS 3.5 integration
- Hardware ray tracing support
- HDR rendering
- Vulkan/DirectX 12 backend
- **Optimization Features**
- TensorRT model optimization
- FP16/INT8 precision modes
- VRAM β RAM off-loading
- Automatic memory management
- Multi-GPU link support
### User Interface
- **Glass-morphism Design** - Modern UI with blur effects and Neon Cyan/Purple accents
- **Dark Mode** - Easy on the eyes for extended sessions
- **Responsive Layout** - Adapts to different screen sizes
- **Real-Time Updates** - Live metrics and progress indicators
- **Intuitive Navigation** - Easy-to-use multi-panel interface
---
## π Requirements
### Hardware Requirements
**Minimum:**
- NVIDIA RTX 4060 or higher
- 16 GB RAM
- 50 GB free storage
- 1920x1080 display
**Recommended:**
- NVIDIA RTX 5080/5090
- 32 GB+ RAM
- 100 GB+ free SSD storage
- 4K display
### Software Requirements
**Windows:**
- Windows 10/11 (64-bit)
- NVIDIA Driver 550.0 or newer
- Visual Studio 2019/2022 (for building)
**Linux:**
- Ubuntu 22.04 LTS or newer (or equivalent)
- NVIDIA Driver 550.0 or newer
- GCC 9.0+ or Clang 10.0+
**Common:**
- Qt 6.5+
- CUDA Toolkit 12.0+
- Python 3.10+ (optional, for Python bridge)
- Vulkan SDK 1.3+ (optional, for rendering)
---
## π οΈ Building from Source
### 1. Install Dependencies
#### Windows
```powershell
# Install Qt (via online installer or vcpkg)
vcpkg install qt6
# Install CUDA Toolkit
# Download from: https://developer.nvidia.com/cuda-downloads
# Install Vulkan SDK
# Download from: https://vulkan.lunarg.com/
```
#### Linux (Ubuntu/Debian)
```bash
# Install Qt6
sudo apt install qt6-base-dev qt6-declarative-dev qt6-tools-dev \
qml6-module-qtquick-controls qml6-module-qtcharts
# Install CUDA Toolkit
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-ubuntu2204.pin
sudo mv cuda-ubuntu2204.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget https://developer.download.nvidia.com/compute/cuda/12.3.0/local_installers/cuda-repo-ubuntu2204-12-3-local_12.3.0-545.23.06-1_amd64.deb
sudo dpkg -i cuda-repo-ubuntu2204-12-3-local_12.3.0-545.23.06-1_amd64.deb
sudo cp /var/cuda-repo-ubuntu2204-12-3-local/cuda-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install cuda
# Install Vulkan SDK
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | sudo apt-key add -
sudo wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
sudo apt update
sudo apt install vulkan-sdk
# Install Python dependencies (optional)
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
pip install diffusers transformers accelerate safetensors
```
### 2. Clone and Build
```bash
# Clone repository
git clone https://github.com/yourusername/AI-Forge-Studio.git
cd AI-Forge-Studio
# Create build directory
mkdir build && cd build
# Configure with CMake
cmake .. -DCMAKE_BUILD_TYPE=Release
# Build
cmake --build . --config Release -j$(nproc)
# Run
./AIForgeStudio
```
### 3. Optional: Build with TensorRT
```bash
# Download TensorRT from NVIDIA website
# Extract and set environment variable
export TensorRT_DIR=/path/to/TensorRT
# Rebuild with TensorRT support
cmake .. -DCMAKE_BUILD_TYPE=Release -DTensorRT_DIR=$TensorRT_DIR
cmake --build . --config Release -j$(nproc)
```
---
## π Usage Guide
### Getting Started
1. **Launch the Application**
```bash
./AIForgeStudio
```
2. **Check Dashboard**
- View real-time GPU/CPU metrics
- Monitor VRAM usage
- Check system status
3. **Load a Model**
- Navigate to "Models" tab
- Click "Load Model" or "Import from HF"
- Select your AI model file or HuggingFace model ID
- Wait for loading to complete
4. **Generate Images**
- Go to "Render" tab
- Select loaded model
- Enter your prompt
- Adjust settings (steps, guidance, resolution)
- Click "Generate Image"
### Model Management
**Supported Formats:**
- `.safetensors` - HuggingFace safe format (recommended)
- `.gguf` - GPT-Generated Unified Format
- `.onnx` - Open Neural Network Exchange
- `.pt`/`.pth` - PyTorch models
**Optimization:**
- Click "Optimize" on any loaded model
- Select precision mode (FP16 recommended for RTX 50-series)
- Wait for TensorRT optimization (one-time process)
- Enjoy faster inference!
### Tips for Best Performance
1. **Enable TensorRT Optimization** - 2-3x faster inference
2. **Use FP16 Precision** - Optimal for RTX 50-series
3. **Enable DLSS** - Better preview quality with less VRAM
4. **Monitor VRAM** - Unload unused models to free memory
5. **Adjust Batch Size** - Lower for high-resolution images
---
## ποΈ Architecture
### Project Structure
```
AI-Forge-Studio/
βββ core/ # C++ backend modules
β βββ hardware_monitor.cpp # GPU/CPU monitoring (NVML)
β βββ ai_engine.cpp # AI inference (CUDA/TensorRT)
β βββ render_engine.cpp # Graphics rendering (Vulkan)
β βββ logger.cpp # Logging system
β
βββ python_bridge/ # Python integration
β βββ bridge.cpp # C++ β Python bridge (Pybind11)
β βββ model_runner.py # Python AI model runner
β
βββ ui/ # QML user interface
β βββ main.qml # Main window
β βββ dashboard.qml # Hardware monitoring dashboard
β βββ model_manager.qml # Model management interface
β βββ render_view.qml # Image generation view
β βββ settings.qml # Application settings
β
βββ tests/ # Test suite
βββ docs/ # Documentation
βββ models/ # Model storage directory
βββ output/ # Generated images output
βββ main.cpp # Application entry point
```
### Technology Stack
- **Core:** C++17
- **UI Framework:** Qt 6 (QML + QtQuick)
- **Graphics API:** Vulkan 1.3 / DirectX 12
- **AI Framework:** CUDA 12 + TensorRT 8
- **Python Integration:** Pybind11
- **Hardware Monitoring:** NVIDIA NVML
- **Build System:** CMake 3.16+
### Component Interaction
```
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β QML Frontend β
β (Dashboard, Model Manager, Render View, Settings) β
ββββββββββββββββββ¬βββββββββββββββββββββββββββββββββββββββββ
β Qt Signals/Slots
ββββββββββββββββββΌβββββββββββββββββββββββββββββββββββββββββ
β BackendController (C++) β
β - Exposes C++ API to QML β
β - Manages component lifecycle β
βββββββ¬βββββββββββ¬βββββββββββ¬βββββββββββ¬ββββββββββββββββββ
β β β β
βββββββΌβββββ ββββΌββββββ ββββΌββββββ ββββΌβββββββββββ
β Hardware β β AI β β Render β β Python β
β Monitor β β Engine β β Engine β β Bridge β
β (NVML) β β(CUDA/ β β(Vulkan)β β (Pybind11) β
β β βTensorRTβ β β β β
ββββββββββββ ββββββββββ ββββββββββ ββββββββ¬βββββββ
β
ββββββββΌβββββββ
β Python β
β Model Runnerβ
β (PyTorch) β
βββββββββββββββ
```
---
## π§ͺ Testing
### Running Tests
```bash
# Build with tests enabled
cmake .. -DBUILD_TESTS=ON
cmake --build . --config Release
# Run all tests
ctest --output-on-failure
# Run specific test
./tests/gpu_benchmark
```
### Benchmark Suite
The included benchmark suite tests:
- GPU inference performance
- Memory allocation efficiency
- Model loading times
- Rendering frame rates
---
## π Troubleshooting
### Common Issues
**Issue: "CUDA not found"**
- Ensure CUDA Toolkit is installed
- Set `CUDA_PATH` environment variable
- Verify NVIDIA driver version
**Issue: "Failed to initialize NVML"**
- Update NVIDIA drivers to latest version
- Check if GPU is properly detected by OS
- Try running with administrator/sudo privileges
**Issue: "QML module not found"**
- Install Qt6 QuickControls and Charts modules
- Set `QML_IMPORT_PATH` environment variable
- Verify Qt installation
**Issue: "Python bridge failed"**
- Install required Python packages: `torch`, `diffusers`, `transformers`
- Ensure Python 3.10+ is in PATH
- Check `python_bridge` directory is accessible
### Debug Mode
```bash
# Build in debug mode
cmake .. -DCMAKE_BUILD_TYPE=Debug
cmake --build .
# Run with verbose logging
./AIForgeStudio --log-level=DEBUG
```
---
## π License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
---
## π€ Contributing
Contributions are welcome! Please feel free to submit pull requests.
1. Fork the repository
2. Create your feature branch (`git checkout -b feature/amazing-feature`)
3. Commit your changes (`git commit -m 'Add amazing feature'`)
4. Push to the branch (`git push origin feature/amazing-feature`)
5. Open a Pull Request
---
## π§ Contact
Project Link: [https://github.com/yourusername/AI-Forge-Studio](https://github.com/yourusername/AI-Forge-Studio)
---
## π Acknowledgments
- NVIDIA for CUDA, TensorRT, and DLSS technologies
- Qt Project for the excellent UI framework
- HuggingFace for AI model hosting
- The open-source community for various libraries and tools
---
**Built with β€οΈ for RTX 50-Series GPUs**