Skip to main content
Glama

write_matrix_entry

Add entries to the Knowledge Matrix for tracking bugs, features, testing results, decisions, documentation updates, and session goals with timestamps.

Instructions

Write or append entry to Knowledge Matrix. Topics: Bugs & Fixes, Features Added, Testing Results, Decisions & Direction, Documentation Updates, Next Session Goals

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
contentYesEntry content with timestamp (e.g., '3:45pm CST 🐛 Fixed bug in addTask')
dateNoDate in YYYY-MM-DD format (defaults to today)
topicYesMatrix topic

Implementation Reference

  • Switch case handler for the 'write_matrix_entry' tool that delegates execution to the callAPI function with action 'writeMatrixEntry' and tool arguments.
    case "write_matrix_entry": result = await callAPI("writeMatrixEntry", args); break;
  • Tool definition including name, description, and input schema for validating parameters: date (optional), topic (enum), content (required).
    { name: "write_matrix_entry", description: "Write or append entry to Knowledge Matrix. Topics: Bugs & Fixes, Features Added, Testing Results, Decisions & Direction, Documentation Updates, Next Session Goals", inputSchema: { type: "object", properties: { date: { type: "string", description: "Date in YYYY-MM-DD format (defaults to today)" }, topic: { type: "string", description: "Matrix topic", enum: ["Bugs & Fixes", "Features Added", "Testing Results", "Decisions & Direction", "Documentation Updates", "Next Session Goals"] }, content: { type: "string", description: "Entry content with timestamp (e.g., '3:45pm CST 🐛 Fixed bug in addTask')" } }, required: ["topic", "content"] } },
  • Utility function that proxies tool calls to the Google Apps Script backend via POST request to API_URL, handling form data, logging, and JSON response parsing. This is where the actual 'writeMatrixEntry' logic is invoked remotely.
    async function callAPI(action, data = {}) { debugLog('=== API CALL START ==='); debugLog(`Action: ${action}`); debugLog(`Data: ${JSON.stringify(data)}`); try { // Build form-encoded body for POST const formData = new URLSearchParams(); formData.append('action', action); // Add all data fields to form for (const [key, value] of Object.entries(data)) { if (value !== undefined && value !== null) { formData.append(key, value.toString()); } } const formString = formData.toString(); debugLog(`FormData: ${formString}`); debugLog(`API_URL: ${API_URL}`); // Use POST with proper content type const response = await fetch(API_URL, { method: 'POST', headers: { 'Content-Type': 'application/x-www-form-urlencoded', }, body: formString }); debugLog(`Response status: ${response.status}`); debugLog(`Response ok: ${response.ok}`); if (!response.ok) { debugLog(`Response not OK: ${response.status} ${response.statusText}`); throw new Error(`API request failed: ${response.status} ${response.statusText}`); } const text = await response.text(); debugLog(`Response text length: ${text.length}`); debugLog(`Response text: ${text}`); if (!text) { debugLog('ERROR: Empty response from API'); throw new Error('Empty response from API'); } const parsed = JSON.parse(text); debugLog(`Parsed successfully: ${JSON.stringify(parsed)}`); debugLog('=== API CALL END ==='); return parsed; } catch (error) { debugLog(`ERROR in callAPI: ${error.message}`); debugLog(`ERROR stack: ${error.stack}`); throw error; } }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/PromptishOperations/mcpSpec'

If you have feedback or need assistance with the MCP directory API, please join our Discord server