Skip to main content
Glama

query_matrix

Search for keywords across topics and dates within the Revenue Engine MCP to analyze business data and track revenue-related information.

Instructions

Search Matrix for keyword across topics and dates

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
keywordYesSearch term
topicsNoTopics to search (optional, defaults to all)
limitNoMax results (default 50)

Implementation Reference

  • Handler for the 'query_matrix' tool. Delegates execution to the external Google Apps Script API via callAPI function with action 'queryMatrix' and tool arguments.
    case "query_matrix": result = await callAPI("queryMatrix", args); break;
  • index.js:454-476 (registration)
    Registration of the 'query_matrix' tool in the ListTools response, including name, description, and input schema definition.
    { name: "query_matrix", description: "Search Matrix for keyword across topics and dates", inputSchema: { type: "object", properties: { keyword: { type: "string", description: "Search term" }, topics: { type: "array", items: { type: "string" }, description: "Topics to search (optional, defaults to all)" }, limit: { type: "number", description: "Max results (default 50)" } }, required: ["keyword"] } },
  • Input schema for the 'query_matrix' tool, defining parameters: keyword (required), topics (optional array), limit (optional number).
    inputSchema: { type: "object", properties: { keyword: { type: "string", description: "Search term" }, topics: { type: "array", items: { type: "string" }, description: "Topics to search (optional, defaults to all)" }, limit: { type: "number", description: "Max results (default 50)" } }, required: ["keyword"]
  • Helper function callAPI used by query_matrix handler to make POST request to Google Apps Script endpoint with action 'queryMatrix' and arguments.
    async function callAPI(action, data = {}) { debugLog('=== API CALL START ==='); debugLog(`Action: ${action}`); debugLog(`Data: ${JSON.stringify(data)}`); try { // Build form-encoded body for POST const formData = new URLSearchParams(); formData.append('action', action); // Add all data fields to form for (const [key, value] of Object.entries(data)) { if (value !== undefined && value !== null) { formData.append(key, value.toString()); } } const formString = formData.toString(); debugLog(`FormData: ${formString}`); debugLog(`API_URL: ${API_URL}`); // Use POST with proper content type const response = await fetch(API_URL, { method: 'POST', headers: { 'Content-Type': 'application/x-www-form-urlencoded', }, body: formString }); debugLog(`Response status: ${response.status}`); debugLog(`Response ok: ${response.ok}`); if (!response.ok) { debugLog(`Response not OK: ${response.status} ${response.statusText}`); throw new Error(`API request failed: ${response.status} ${response.statusText}`); } const text = await response.text(); debugLog(`Response text length: ${text.length}`); debugLog(`Response text: ${text}`); if (!text) { debugLog('ERROR: Empty response from API'); throw new Error('Empty response from API'); } const parsed = JSON.parse(text); debugLog(`Parsed successfully: ${JSON.stringify(parsed)}`); debugLog('=== API CALL END ==='); return parsed; } catch (error) { debugLog(`ERROR in callAPI: ${error.message}`); debugLog(`ERROR stack: ${error.stack}`); throw error; } }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/PromptishOperations/mcpSpec'

If you have feedback or need assistance with the MCP directory API, please join our Discord server