# π¦ Wireshark Advanced Tools Implementation Guide
## π Complete Implementation Roadmap
### 1. **PCAP Time Slicer** π
#### Research Findings:
- **Tool**: `editcap` with `-A` (start time) and `-B` (stop time) options
- **Time Format**: `YYYY-MM-DDThh:mm:ss[.nnnnnnnnn][Z|+-hh:mm]` or Unix epoch
- **Capabilities**: Extract exact time windows from large captures
#### Design Architecture:
```python
class WiresharkPCAPTimeSlicer:
"""Extract specific time windows from PCAP files"""
def __init__(self):
self.tool = "editcap"
self.supported_formats = ["pcap", "pcapng"]
async def slice_by_time_range(
self,
input_file: str,
start_time: str, # ISO format or epoch
end_time: str,
output_file: str = None,
preserve_comments: bool = True
) -> Dict[str, Any]:
"""Extract packets within time range"""
async def slice_by_duration(
self,
input_file: str,
start_time: str,
duration_seconds: int,
output_file: str = None
) -> Dict[str, Any]:
"""Extract packets for specific duration"""
async def slice_relative_time(
self,
input_file: str,
start_offset: float, # Seconds from first packet
end_offset: float,
output_file: str = None
) -> Dict[str, Any]:
"""Extract using relative time offsets"""
```
#### Implementation Requirements:
- Time format validation and conversion
- Progress tracking for large files
- Multi-file time range extraction
- Timezone handling
### 2. **PCAP Splitter** π¦
#### Research Findings:
- **Options**:
- `-c <packets per file>`: Split by packet count
- `-i <seconds per file>`: Split by time intervals
- `-C`: Split by file size (with choplen)
- **Output**: Creates numbered files (e.g., output_00001.pcap)
#### Design Architecture:
```python
class WiresharkPCAPSplitter:
"""Split PCAP files by various criteria"""
async def split_by_packets(
self,
input_file: str,
packets_per_file: int,
output_prefix: str = None
) -> Dict[str, Any]:
"""Split by packet count"""
async def split_by_time(
self,
input_file: str,
seconds_per_file: int,
output_prefix: str = None
) -> Dict[str, Any]:
"""Split by time intervals"""
async def split_by_size(
self,
input_file: str,
mb_per_file: int,
output_prefix: str = None
) -> Dict[str, Any]:
"""Split by file size"""
async def split_by_protocol(
self,
input_file: str,
output_prefix: str = None
) -> Dict[str, Any]:
"""Advanced: Split by protocol type"""
```
### 3. **PCAP Merger** π
#### Research Findings:
- **Tool**: `mergecap`
- **Modes**:
- Default: Merge chronologically by timestamp
- `-a`: Append/concatenate mode (ignore timestamps)
- **Features**: Handles different encapsulation types
#### Design Architecture:
```python
class WiresharkPCAPMerger:
"""Intelligently merge multiple PCAP files"""
async def merge_chronological(
self,
input_files: List[str],
output_file: str = None,
remove_duplicates: bool = False
) -> Dict[str, Any]:
"""Merge files in timestamp order"""
async def merge_append(
self,
input_files: List[str],
output_file: str = None
) -> Dict[str, Any]:
"""Concatenate files sequentially"""
async def merge_with_filter(
self,
input_files: List[str],
filter_expression: str,
output_file: str = None
) -> Dict[str, Any]:
"""Merge only packets matching filter"""
```
### 4. **Hex-to-PCAP Converter** π’
#### Research Findings:
- **Tool**: `text2pcap`
- **Input Formats**: Hex dumps, od output, tcpdump hex
- **Options**:
- `-e`: Ethernet header
- `-i`: IP header
- `-u`: UDP header
- `-t`: TCP header
- `-s`: SCTP header
#### Design Architecture:
```python
class WiresharkHexToPCAP:
"""Convert hex dumps to analyzable PCAP format"""
async def convert_hex_dump(
self,
hex_input: str, # File path or hex string
output_file: str = None,
encapsulation: str = "ethernet",
add_fake_headers: bool = True
) -> Dict[str, Any]:
"""Convert hex to PCAP with appropriate headers"""
async def convert_log_file(
self,
log_file: str,
pattern: str, # Regex for hex extraction
output_file: str = None
) -> Dict[str, Any]:
"""Extract hex from logs and convert"""
```
### 5. **HTTP Deep Analyzer** π
#### Research Findings:
- **Tool**: `tshark` with HTTP filters
- **Statistics**: `-z http,stat`, `-z http,tree`
- **Fields**: http.request, http.response, http.file_data
#### Design Architecture:
```python
class WiresharkHTTPAnalyzer:
"""Deep HTTP/HTTPS transaction analysis"""
async def extract_http_flows(
self,
input_file: str,
include_bodies: bool = True,
decode_gzip: bool = True
) -> Dict[str, Any]:
"""Extract complete HTTP transactions"""
async def analyze_http_performance(
self,
input_file: str
) -> Dict[str, Any]:
"""HTTP timing and performance metrics"""
async def extract_http_objects(
self,
input_file: str,
output_dir: str = None
) -> Dict[str, Any]:
"""Extract files transferred over HTTP"""
```
### 6. **DNS Query Analyzer** π
#### Research Findings:
- **Tool**: `tshark` with DNS statistics
- **Options**: `-z dns,tree`, `-Y dns`
- **Fields**: dns.qry.name, dns.resp.time, dns.flags
#### Design Architecture:
```python
class WiresharkDNSAnalyzer:
"""DNS traffic intelligence and analysis"""
async def analyze_dns_queries(
self,
input_file: str,
group_by_domain: bool = True
) -> Dict[str, Any]:
"""Analyze DNS query patterns"""
async def detect_dns_tunneling(
self,
input_file: str,
entropy_threshold: float = 3.5
) -> Dict[str, Any]:
"""Detect potential DNS tunneling"""
async def dns_response_analysis(
self,
input_file: str
) -> Dict[str, Any]:
"""Analyze DNS response times and failures"""
```
### 7. **SSL/TLS Inspector** π
#### Research Findings:
- **Tool**: `tshark` with SSL/TLS dissectors
- **Decryption**: Requires keylog file or RSA keys
- **Options**: `-o ssl.keylog_file:path`
#### Design Architecture:
```python
class WiresharkSSLInspector:
"""SSL/TLS traffic inspection and analysis"""
async def analyze_ssl_handshakes(
self,
input_file: str
) -> Dict[str, Any]:
"""Analyze SSL/TLS handshakes"""
async def decrypt_ssl_traffic(
self,
input_file: str,
keylog_file: str = None,
rsa_key_file: str = None
) -> Dict[str, Any]:
"""Decrypt SSL/TLS traffic with keys"""
async def ssl_certificate_analysis(
self,
input_file: str
) -> Dict[str, Any]:
"""Extract and analyze certificates"""
```
### 8. **Latency Profiler** β±οΈ
#### Research Findings:
- **Tool**: `tshark` with time analysis
- **Fields**: frame.time_delta, tcp.time_relative
- **Statistics**: `-z io,stat`
#### Design Architecture:
```python
class WiresharkLatencyProfiler:
"""Network latency and performance profiling"""
async def analyze_tcp_latency(
self,
input_file: str,
percentiles: List[int] = [50, 90, 95, 99]
) -> Dict[str, Any]:
"""TCP RTT and latency analysis"""
async def analyze_application_latency(
self,
input_file: str,
protocol: str = "http"
) -> Dict[str, Any]:
"""Application-level latency metrics"""
async def generate_latency_heatmap(
self,
input_file: str,
time_bucket_seconds: int = 60
) -> Dict[str, Any]:
"""Time-based latency visualization data"""
```
### 9. **Threat Detector** π‘οΈ
#### Research Findings:
- **Patterns**: Port scans, DDoS, malware signatures
- **Integration**: ML models for anomaly detection
- **Tools**: Combine multiple tshark filters
#### Design Architecture:
```python
class WiresharkThreatDetector:
"""AI-powered network threat detection"""
async def detect_port_scans(
self,
input_file: str,
threshold_ports: int = 10,
time_window: int = 60
) -> Dict[str, Any]:
"""Detect port scanning activity"""
async def detect_ddos_patterns(
self,
input_file: str
) -> Dict[str, Any]:
"""Identify DDoS attack patterns"""
async def ml_anomaly_detection(
self,
input_file: str,
model_path: str = None
) -> Dict[str, Any]:
"""ML-based anomaly detection"""
```
### 10. **Remote Capture** π
#### Research Findings:
- **Tool**: `sshdump` (if available) or SSH + tcpdump
- **Requirements**: SSH access to remote hosts
- **Features**: Multi-host synchronization
#### Design Architecture:
```python
class WiresharkRemoteCapture:
"""Distributed remote packet capture"""
async def capture_single_host(
self,
host: str,
username: str,
password: str = None,
key_file: str = None,
interface: str = "any",
filter: str = "",
duration: int = 60
) -> Dict[str, Any]:
"""Capture from single remote host"""
async def capture_multi_host(
self,
hosts: List[Dict[str, Any]],
synchronized: bool = True
) -> Dict[str, Any]:
"""Synchronized multi-host capture"""
```
## π Implementation Strategy
### Phase 1: Core PCAP Manipulation (Week 1)
1. Implement PCAP Time Slicer
2. Implement PCAP Splitter
3. Implement PCAP Merger
4. Implement Hex-to-PCAP Converter
### Phase 2: Protocol Analysis (Week 2)
1. Implement HTTP Deep Analyzer
2. Implement DNS Query Analyzer
3. Implement SSL/TLS Inspector
### Phase 3: Advanced Analysis (Week 3)
1. Implement Latency Profiler
2. Implement Threat Detector
3. Implement Remote Capture
### π¦ Integration with MCP Server
Each tool will be integrated as a new MCP endpoint:
- `wireshark_pcap_time_slice`
- `wireshark_pcap_split`
- `wireshark_pcap_merge`
- `wireshark_hex_to_pcap`
- `wireshark_http_analyze`
- `wireshark_dns_analyze`
- `wireshark_ssl_inspect`
- `wireshark_latency_profile`
- `wireshark_threat_detect`
- `wireshark_remote_capture`
### π§ Testing Strategy
1. **Unit Tests**: Each function with mock data
2. **Integration Tests**: Real PCAP files
3. **Performance Tests**: Large file handling
4. **Security Tests**: Input validation
### π Documentation Requirements
1. **API Documentation**: Each endpoint
2. **Usage Examples**: Common scenarios
3. **Performance Guidelines**: File size limits
4. **Security Considerations**: Safe handling
## π― Success Metrics
- All 10 tools implemented and tested
- < 3 second response time for most operations
- Support for files up to 1GB
- 95%+ test coverage
- Zero security vulnerabilities