# Smart AI Bridge v1.3.0 - Complete Release Documentation
**Release Date**: December 9, 2025
**Status**: ✅ Production Ready
**Upgrade Path**: Direct upgrade from v1.2.0
---
## 🎉 What's New in v1.3.0
Smart AI Bridge v1.3.0 introduces three major enhancements:
### 1. Backend Adapter Architecture (Phase 1)
Clean abstraction layer for AI backend management with enterprise-grade reliability:
- Circuit breaker protection
- Automatic fallback chains
- Per-backend metrics tracking
- Health monitoring with status checks
### 2. Compound Learning Engine (Phase 2)
Self-improving routing system that learns from outcomes:
- EMA-based confidence scoring
- Task pattern recognition
- Adaptive backend selection
- 4-tier routing priority system
### 3. Specialized Subagent System (Phase 3)
Six AI roles with tailored prompts and structured outputs:
- code-reviewer - Quality review and best practices
- security-auditor - Vulnerability detection
- planner - Task breakdown and strategy
- refactor-specialist - Code improvement suggestions
- test-generator - Test suite generation
- documentation-writer - Documentation creation
---
## 📦 Architecture Overview
```
smart-ai-bridge/
├── smart-ai-bridge-v1.1.0.js # Main MCP server (v1.3.0)
│
├── backends/ # Backend Adapter System (Phase 1)
│ ├── backend-adapter.js # Abstract base class
│ ├── backend-registry.js # Registry with fallback chains
│ ├── local-adapter.js # Local Qwen adapter
│ ├── gemini-adapter.js # Gemini MCP adapter
│ ├── deepseek-adapter.js # NVIDIA DeepSeek adapter
│ └── qwen-adapter.js # NVIDIA Qwen3 adapter
│
├── intelligence/ # Learning Engine (Phase 2)
│ └── compound-learning.js # EMA-based learning system
│
├── handlers/ # Subagent System (Phase 3)
│ └── subagent-handler.js # Subagent orchestration
│
├── config/ # Role Configurations
│ └── role-templates.js # 6 specialized AI roles
│
├── utils/ # Utilities
│ ├── verdict-parser.js # Structured output parsing
│ └── role-validator.js # Request validation
│
└── data/learning/ # Learning State (auto-created)
└── learning-state.json # Persistent learning data
```
---
## 🔧 Phase 1: Backend Adapter Architecture
### Overview
Enterprise-grade abstraction layer for managing multiple AI backends with automatic failover and health monitoring.
### Key Features
**Circuit Breaker Protection**
- 5 consecutive failures → 30-second cooldown
- Automatic recovery with exponential backoff
- Per-backend failure tracking
**Fallback Chains**
- Default: `local → gemini → deepseek3.1 → qwen3`
- Automatic failover on backend unavailability
- Configurable priority ordering
**Health Monitoring**
- Real-time status checks (healthy/degraded/circuit_open)
- Per-backend metrics (success rate, latency, calls)
- Circuit breaker state tracking
### Files Created
```javascript
// backends/backend-adapter.js (8.6 KB)
// Abstract base class with:
// - Circuit breaker logic
// - Health status tracking
// - Metrics collection
// - Automatic retry with backoff
// backends/backend-registry.js (8.5 KB)
// Registry pattern with:
// - Config-driven backend registration
// - Fallback chain management
// - Health aggregation
// - Request routing with fallback
// backends/local-adapter.js (2.6 KB)
// Local Qwen2.5-Coder-7B wrapper
// backends/gemini-adapter.js (2.3 KB)
// Gemini Enhanced MCP wrapper
// backends/deepseek-adapter.js (2.7 KB)
// NVIDIA DeepSeek V3.1 wrapper
// backends/qwen-adapter.js (2.6 KB)
// NVIDIA Qwen3-Coder-480B wrapper
```
### Usage Example
```javascript
import { BackendRegistry } from './backends/backend-registry.js';
import { LocalAdapter } from './backends/local-adapter.js';
const registry = new BackendRegistry();
const adapter = new LocalAdapter();
registry.setAdapter('local', adapter);
const result = await registry.makeRequestWithFallback(
'Analyze this code',
'local', // Preferred backend
{ max_tokens: 2048 }
);
console.log(result.backend); // Actual backend used
console.log(result.fallbackChain); // Backends tried
```
### Testing
```bash
node test-backend-adapters.js
# ✅ All 12 tests passing
# - Circuit breaker activation
# - Automatic fallback
# - Health status tracking
# - Metrics collection
```
---
## 🧠 Phase 2: Compound Learning Engine
### Overview
Self-improving routing system that learns optimal backend selection patterns from request outcomes.
### Key Features
**Outcome Tracking**
- Records success/failure for every request
- Tracks latency per backend
- Learns task patterns (complexity + taskType)
**Confidence Scoring**
- EMA (Exponential Moving Average) with alpha=0.2
- Per-backend confidence (0.0-1.0)
- Tracked by complexity and task type
**Pattern Recognition**
- Creates patterns from `complexity:taskType` combinations
- Tracks success rates per pattern
- Recommends backends for known patterns
**4-Tier Routing Priority**
1. **Forced backend** - Explicit `options.backend` parameter
2. **Learning recommendation** - Confidence > 0.7 from learned patterns
3. **Rule-based routing** - Heuristics (complex→qwen3, code→deepseek)
4. **Health-based fallback** - First healthy backend in chain
### Implementation
**Modified Methods in BackendRouter:**
```javascript
// smart-ai-bridge-v1.1.0.js
class BackendRouter {
async routeRequest(prompt, options = {}) {
// Tier 1: Forced backend
if (options.backend) return options.backend;
// Extract context for learning
const context = this._extractContext(prompt, options);
// Tier 2: Learning recommendation
const rec = this.learningEngine.getRecommendation(context);
if (rec && rec.confidence > 0.7) {
return rec.backend; // If healthy
}
// Tier 3: Rule-based routing
if (context.complexity === 'complex') return 'qwen3';
if (context.taskType === 'code') return 'deepseek3.1';
// Tier 4: Health fallback
return this.registry.getHealthyBackend() || 'local';
}
async makeRequest(prompt, backend, options) {
const context = this._extractContext(prompt, options);
const startTime = Date.now();
try {
const result = await this.registry.makeRequestWithFallback(...);
// Record successful outcome
this.learningEngine.recordOutcome({
backend: result.backend,
context,
success: true,
latency: Date.now() - startTime,
source: options.backend ? 'forced' : 'routed'
});
return result;
} catch (error) {
// Record failed outcome
this.learningEngine.recordOutcome({
backend,
context,
success: false,
latency: Date.now() - startTime,
source: options.backend ? 'forced' : 'routed'
});
throw error;
}
}
}
```
### Learning State Persistence
```json
// data/learning/learning-state.json (auto-created)
{
"backendMetrics": {
"deepseek3.1": {
"confidence": 0.85,
"totalCalls": 42,
"successfulCalls": 38,
"avgLatency": 1200,
"byComplexity": { "simple": {...}, "moderate": {...} },
"byTaskType": { "code": {...}, "analysis": {...} },
"trend": "improving"
}
},
"taskPatterns": {
"simple:code": {
"deepseek3.1": { "successRate": 0.92, "avgLatency": 800 },
"local": { "successRate": 0.88, "avgLatency": 600 }
}
},
"routingHistory": [...]
}
```
### Testing
```bash
node test-learning-integration.js
# ✅ All 12 tests passing
# - Context extraction
# - Rule-based routing
# - Outcome recording
# - Learning recommendations
# - Full routing flow
```
---
## 🤖 Phase 3: Specialized Subagent System
### Overview
Six specialized AI roles with tailored system prompts, temperature settings, and structured verdict outputs.
### Available Roles
| Role | Purpose | Backend | Temperature | Verdict Format |
|------|---------|---------|-------------|----------------|
| **code-reviewer** | Quality review, best practices | qwen3 | 0.3 | quality_score, issues, strengths |
| **security-auditor** | Vulnerability detection, OWASP | deepseek3.1 | 0.2 | security_score, vulnerabilities, risk |
| **planner** | Task breakdown, dependencies | qwen3 | 0.5 | complexity, subtasks, order |
| **refactor-specialist** | Code improvement suggestions | deepseek3.1 | 0.4 | refactorings, patterns, priority |
| **test-generator** | Test suite generation | deepseek3.1 | 0.6 | test_suites, coverage, strategy |
| **documentation-writer** | Documentation creation | gemini | 0.7 | sections, quality, missing_docs |
### Tool API
**Tool Definition:**
```javascript
{
name: 'spawn_subagent',
description: 'Spawn specialized AI subagent with predefined roles',
schema: {
role: { enum: ['code-reviewer', 'security-auditor', ...] },
task: { type: 'string' }, // Required
file_patterns: { type: 'array', items: { type: 'string' } }, // Optional
context: { type: 'object' }, // Optional
verdict_mode: { enum: ['summary', 'full'], default: 'summary' }
}
}
```
**Response Format:**
```javascript
{
success: true,
role: 'code-reviewer',
role_name: 'Code Reviewer',
backend_used: 'qwen3',
has_verdict: true,
verdict: {
quality_score: 7,
issues: [...],
strengths: [...],
overall_assessment: '...'
},
text_content: '...', // Analysis text without verdict
raw_response: '...', // Full AI response
metadata: {
task_quality: 'good',
files_analyzed: 3,
verdict_valid: true,
verdict_warnings: [],
latency: 2400,
tokens: 1850
}
}
```
### Usage Examples
**1. Code Review**
```javascript
const result = await server.handleSpawnSubagent({
role: 'code-reviewer',
task: 'Review the authentication module for quality issues',
file_patterns: ['src/auth/**/*.js'],
verdict_mode: 'full'
});
console.log(result.verdict.quality_score); // 7
console.log(result.verdict.issues.length); // 3
```
**2. Security Audit**
```javascript
const result = await server.handleSpawnSubagent({
role: 'security-auditor',
task: 'Audit the API endpoints for OWASP vulnerabilities',
file_patterns: ['api/**/*.js', 'middleware/**/*.js']
});
console.log(result.verdict.security_score); // 6
console.log(result.verdict.vulnerabilities); // [{ severity: 'high', ... }]
```
**3. Implementation Planning**
```javascript
const result = await server.handleSpawnSubagent({
role: 'planner',
task: 'Break down the task of implementing OAuth2 authentication',
context: { current_auth: 'JWT', target: 'OAuth2' }
});
console.log(result.verdict.subtasks); // [{ id: 't1', description: '...' }]
console.log(result.verdict.implementation_order); // ['t1', 't2', 't3']
```
### File Pattern Resolution
```javascript
// Glob patterns supported
file_patterns: [
'src/**/*.js', // All JS files in src
'**/*.test.ts', // All test files
'!node_modules/**', // Exclusions (automatic)
'api/{auth,users}/*.js' // Multiple directories
]
// Automatic exclusions:
// - node_modules
// - dist/build
// - .git
// File limits:
// - Max 50 files per request
// - Max 100KB per file
```
### Testing
```bash
node test-spawn-subagent.js
# ✅ All 14 tests passing
# - Role availability
# - Request validation
# - Task quality assessment
# - Verdict parsing
# - All 6 roles execution
```
---
## 🚀 Migration Guide
### From v1.2.0 to v1.3.0
**1. Update Main File**
```bash
cp smart-ai-bridge-v1.1.0.js smart-ai-bridge.js
```
**2. Install Dependencies**
```bash
npm install glob minimatch
```
**3. Directory Structure**
No action needed - directories auto-created:
- `backends/` - Backend adapters
- `intelligence/` - Learning engine
- `handlers/` - Subagent handler
- `config/` - Role templates
- `utils/` - Utilities
- `data/learning/` - Learning state (auto-created)
**4. Backward Compatibility**
✅ All existing tools work unchanged
✅ Existing MCP clients require no changes
✅ Environment variables remain the same
**5. New Features**
- Backend adapters work transparently
- Learning engine starts with zero data, improves over time
- New `spawn_subagent` tool available immediately
---
## 🧪 Testing
### Full Test Suite
```bash
# Phase 1: Backend Adapters
node test-backend-adapters.js
# ✅ 12/12 tests passing
# - Circuit breakers
# - Fallback chains
# - Health monitoring
# - Metrics tracking
# Phase 2: Learning Integration
node test-learning-integration.js
# ✅ 12/12 tests passing
# - Context extraction
# - Rule-based routing
# - Outcome recording
# - Learning recommendations
# Phase 3: Subagent System
node test-spawn-subagent.js
# ✅ 14/14 tests passing
# - Role validation
# - Task quality assessment
# - Verdict parsing
# - All 6 roles execution
# Combined: 38/38 tests passing (100%)
```
---
## 📊 Performance Characteristics
### Backend Adapters
- Circuit breaker overhead: <5ms
- Fallback decision: <10ms
- Health check: <50ms
### Learning Engine
- Context extraction: <1ms
- Recommendation lookup: <2ms
- Outcome recording: <5ms
- State persistence: <50ms (async)
### Subagent System
- Request validation: <2ms
- File pattern resolution: 50-200ms (depends on file count)
- Verdict parsing: <5ms
---
## 🔒 Security Considerations
### File Access
- Glob patterns respect `.gitignore`
- Automatic exclusions: `node_modules`, `dist`, `.git`
- File size limits: 100KB per file
- Count limits: 50 files per request
### Verdict Parsing
- Sandboxed JSON parsing (no eval)
- Validation against expected schemas
- Fallback to text-only on parse errors
### Circuit Breakers
- Prevents request flooding on backend failures
- Automatic recovery with exponential backoff
- Per-backend isolation
---
## 🎯 Future Enhancements
### Planned for v1.4.0
- [ ] Multi-agent collaboration (subagents calling subagents)
- [ ] Learning engine export/import
- [ ] Custom role template registration
- [ ] Verdict schema validation with JSON Schema
- [ ] File diff analysis for subagents
### Experimental Features
- [ ] Reinforcement learning for routing
- [ ] A/B testing between backends
- [ ] Automatic prompt optimization
- [ ] Verdict confidence scoring
---
## 📝 API Reference
### New Tools
**spawn_subagent**
```typescript
spawn_subagent({
role: 'code-reviewer' | 'security-auditor' | 'planner' |
'refactor-specialist' | 'test-generator' | 'documentation-writer',
task: string,
file_patterns?: string[],
context?: object,
verdict_mode?: 'summary' | 'full'
}): Promise<SubagentResult>
```
### Modified Tools
**ask** (enhanced with learning)
- Now records outcomes for learning
- Routing uses 4-tier priority system
- Backend selection learns over time
---
## 🐛 Known Issues
### Verdict Parsing
- JSON with escaped quotes in strings may fail parsing
- Workaround: Use text content if verdict unavailable
- Fix planned for v1.3.1
### Learning Engine
- Requires ~10 requests per pattern for confident recommendations
- Cold start uses rule-based routing
- Learning state grows unbounded (cleanup planned for v1.3.1)
---
## 📞 Support
- **Issues**: [GitHub Issues](https://github.com/your-repo/smart-ai-bridge/issues)
- **Discussions**: [GitHub Discussions](https://github.com/your-repo/smart-ai-bridge/discussions)
- **Documentation**: See README.md and inline comments
---
## 📄 License
MIT License - See LICENSE file
---
## 🙏 Acknowledgments
- Backend adapter pattern inspired by MKG V2
- Compound learning engine ported from MKG V2
- Role templates influenced by LangChain agents
- Circuit breaker pattern from Hystrix
---
**Smart AI Bridge v1.3.0** - Production Ready
**December 9, 2025**