Skip to main content
Glama

Smart AI Bridge v1.6.0

Enterprise-grade MCP server for Claude Desktop with multi-AI orchestration, token-saving operations, intelligent routing, workflow automation, and comprehensive security.

🎯 Overview

Smart AI Bridge is a production-ready Model Context Protocol (MCP) server that orchestrates AI-powered development operations across multiple backends with automatic failover, smart routing, and advanced AI workflow capabilities.

Key Features

🤖 Multi-AI Backend Orchestration

  • Pre-configured 4-Backend System: 1 local model + 3 cloud AI backends (fully customizable - bring your own providers)

  • Fully Expandable: Add unlimited backends via EXTENDING.md guide

  • Intelligent Routing: Automatic backend selection based on task complexity and content analysis

  • Health-Aware Failover: Circuit breakers with automatic fallback chains

  • Bring Your Own Models: Configure any AI provider (local models, cloud APIs, custom endpoints)

🎨 Bring Your Own Backends: The system ships with example configuration using local LM Studio and NVIDIA cloud APIs, but supports ANY AI providers - OpenAI, Anthropic, Azure OpenAI, AWS Bedrock, custom APIs, or local models via Ollama/vLLM/etc. See EXTENDING.md for integration guide.

💰 Token-Saving AI Operations (v1.4.0+)

  • analyze_file: 90% token savings - Local LLM reads file, returns findings only

  • modify_file: 95% token savings - Local LLM applies natural language edits

  • batch_modify: 95% token savings per file - Multi-file NL modifications

  • Smart Offloading: Claude sends instructions, local LLMs do the heavy lifting

🛠️ 19 Production Tools

Category

Tools

Version

Infrastructure

health, backup_restore, write_files_atomic, rate_limit_status, system_metrics

v1.0+

AI Routing

ask, spawn_subagent

v1.3.0

Token-Saving

analyze_file, modify_file, batch_modify

v1.4.0

Workflows

council, dual_iterate, parallel_agents

v1.5.0

Intelligence

pattern_search, pattern_add, playbook_list, playbook_run, playbook_step, learning_summary

v1.6.0

🔒 Enterprise Security

  • Security Score: 8.7/10 - Certified Production Ready

  • Standards Compliance: OWASP Top 10:2025 (82%), API Security (92%), NIST AI RMF (84%)

  • DoS Protection: Complexity limits, iteration caps, timeout enforcement

  • Input Validation: Type checking, structure validation, sanitization

  • Rate Limiting: 60/min, 500/hr, 5000/day with IP tracking

  • Audit Trail: Complete logging with error sanitization

  • CI/CD Security: GitHub Actions validation workflow

🏆 Production Ready: 100% test coverage, enterprise-grade reliability, MIT licensed

✨ New in v1.6.0

🧠 Intelligence Layer

Complete pattern learning and workflow automation system:

  • Pattern Store: TF-IDF semantic search for learned patterns

  • 5 Built-in Playbooks: tdd-feature, bug-fix, code-review, refactor, documentation

  • Learning Summary: Analytics on patterns, playbooks, and usage trends

  • Adaptive Routing: Learns optimal backend selection over time

🛠️ New Tools

Tool

Purpose

pattern_search

TF-IDF semantic pattern search

pattern_add

Store patterns for learning

playbook_list

List available workflow playbooks

playbook_run

Start playbook execution

playbook_step

Manage playbook execution

learning_summary

Pattern/playbook analytics

🧹 Breaking Change: Removed Tools

These tools were removed because they duplicated Claude's native capabilities without adding value:

Removed Tool

Replacement

Reason

review

Use ask with review prompt

Just a wrapper around ask

read

Claude's native Read tool

Passthrough, no token savings

edit_file

Claude's native Edit tool

Passthrough, no token savings

validate_changes

Use ask with validation prompt

Just a wrapper around ask

multi_edit

Claude's native Edit (multiple)

Passthrough, no token savings


✨ New in v1.5.0

🤝 Multi-AI Council

Get consensus from multiple AI backends on complex decisions:

  • Topic-Based Routing: coding, reasoning, architecture, security, performance

  • Confidence Levels: high (4 backends), medium (3), low (2)

  • Synthesis: Claude combines diverse perspectives into final answer

🔄 Dual Iterate Workflow

Internal generate→review→fix loop using dual backends:

  • Coding Backend: Generates code (e.g., Seed-Coder)

  • Reasoning Backend: Reviews and validates (e.g., DeepSeek-R1)

  • Quality Threshold: Iterates until quality score met

  • Token Savings: Entire workflow runs in MKG, returns only final code

🚀 Parallel Agents (TDD Workflow)

Execute multiple TDD agents with quality gate iteration:

  • Decomposition: Breaks high-level tasks into atomic subtasks

  • Parallel Execution: RED phase tests before GREEN implementation

  • Quality Gates: Iterates based on quality review

  • File Organization: Output organized by phase (red/green/refactor)

👥 TDD Subagent Roles (v1.5.0)

Role

Purpose

tdd-decomposer

Break task into TDD subtasks

tdd-test-writer

RED phase - write failing tests

tdd-implementer

GREEN phase - implement to pass

tdd-quality-reviewer

Quality gate validation


✨ New in v1.4.0

💰 Token-Saving Tools

Tools that offload work to local LLMs, providing massive token savings:

Tool

Token Savings

How It Works

analyze_file

90%

Local LLM reads file, returns structured findings

modify_file

95%

Local LLM applies natural language edits

batch_modify

95% per file

Multi-file NL modifications

📊 Example: modify_file Workflow

Claude → "Add error handling to fetchUser()" → MKG ↓ Local LLM reads file Applies changes Returns diff ↓ Claude ← reviews small diff (~100 tokens vs 2000+) ↓ ├─ Approve → changes applied └─ Reject → retry with feedback

✨ New in v1.3.0

🔌 Backend Adapter Architecture

Enterprise-grade abstraction layer for AI backend management:

  • Circuit Breaker Protection: 5 consecutive failures → 30-second cooldown

  • Automatic Fallback Chains: local → gemini → deepseek → qwen

  • Per-Backend Metrics: Success rate, latency, call counts

  • Health Monitoring: Real-time status (healthy/degraded/circuit_open)

🧠 Compound Learning Engine

Self-improving routing that learns optimal backend selection:

  • EMA Confidence Scoring: Exponential moving average (alpha=0.2)

  • Task Pattern Recognition: Learns from complexity:taskType combinations

  • 4-Tier Routing Priority: Forced → Learning → Rules → Health

  • Persistent State: Saves learning to data/learning/learning-state.json

🤖 Specialized Subagent System

Ten AI roles with tailored prompts and structured outputs:

Role

Category

Purpose

code-reviewer

Quality

Code quality review

security-auditor

Security

Vulnerability detection

planner

Planning

Task breakdown

refactor-specialist

Refactoring

Code improvement

test-generator

Testing

Test creation

documentation-writer

Docs

Documentation generation

tdd-decomposer

TDD

Break into TDD subtasks

tdd-test-writer

TDD

RED phase - failing tests

tdd-implementer

TDD

GREEN phase - implementation

tdd-quality-reviewer

TDD

Quality gate validation

Backend Configuration: Subagent backends are user-configurable via environment variables:

# Override individual roles SUBAGENT_CODE_REVIEWER_BACKEND=gemini SUBAGENT_SECURITY_AUDITOR_BACKEND=local # Or set a global default for all subagents SUBAGENT_DEFAULT_BACKEND=qwen3

Tool: spawn_subagent with structured verdict outputs

🔒 Security Certification (8.7/10)

  • Security Score: 8.7/10 - Production Ready with Monitoring

  • OWASP Top 10:2025: 82% compliance with documented mitigations

  • OWASP API Security: 92% compliance (strongest category)

  • NIST AI RMF: 84% alignment across all 4 functions

  • Automated Testing: 125+ security tests with 95% pass rate

  • CI/CD Integration: GitHub Actions workflow for continuous validation

  • Certification ID: SAB-SEC-2025-1209-v130 (Valid until March 9, 2026)

✨ New in v1.2.2

🎯 True Dynamic Token Detection (Patch Release)

  • Auto-Detects Context Limits: Queries actual model max_model_len from /v1/models endpoint

  • Multi-Service Support: Works with vLLM, LM Studio, Ollama automatically

  • Fixed Hardcoded Fallback: Corrected 65,536 → 8,192 tokens (matches actual Qwen2.5-Coder-14B-AWQ)

  • Runtime Updates: Backend maxTokens updated with detected values at startup

  • Impact: Prevents token overflow errors, accurate health check reporting

  • Plug-and-Play: Switch models (4K, 8K, 32K, 128K+) without configuration changes

✨ New in v1.2.1

🔧 Auto-Detection Hotfix (Critical Fix)

  • Port Priority Fix: vLLM port 8002 scanned before generic HTTP port 8080

  • LLM Validation: Validates /v1/models response contains actual LLM model names

  • Enhanced Validation: validateEndpoint() checks content, not just HTTP status codes

  • Impact: Increases local model usage from 0% to 90%+ (fixes cloud fallback issue)

  • No Action Required: Auto-detection works automatically on startup

✨ New in v1.2.0

🎯 Dynamic Token Scaling

  • Automatic Token Allocation: Intelligently scales token limits based on request complexity

  • Unity Generation: 16,384 tokens for large game development scripts

  • Complex Requests: 8,192 tokens for comprehensive code generation

  • Simple Queries: 2,048 tokens for fast, efficient responses

  • Backend-Aware Limits: Respects individual AI model maximum capacities

  • Performance Optimization: 75% reduction in token usage for simple queries

  • Zero Breaking Changes: Fully backward compatible with existing code

✨ New in v1.1.1

🔧 MCP Protocol Compliance Fix

  • Stdout Contamination Resolution: Fixed JSON parse errors in Claude Desktop

  • MCP-Compliant Logging: All logging redirected to stderr for protocol compliance

  • Enhanced Logger: Configurable log levels (silent, error, warn, info, debug)

  • Production Ready: Eliminates "Unexpected token" errors in Claude Desktop integration

✨ New in v1.1.0

  • LocalServiceDetector - Auto-discover local AI services (vLLM, LM Studio, Ollama) with WSL support

  • ConversationThreading - Multi-turn conversation management with thread IDs and search capabilities

  • UsageAnalytics - Comprehensive usage tracking, cost analysis, and optimization recommendations

  • Dashboard Server - Optional web-based monitoring interface (opt-in, disabled by default)

🚀 Multi-Backend Architecture

Flexible 4-backend system pre-configured with 1 local + 3 cloud backends for maximum development efficiency. The architecture is fully expandable - see EXTENDING.md for adding additional backends.

🎯 Pre-configured AI Backends

The system comes with 4 specialized backends (fully expandable via EXTENDING.md):

Cloud Backend 1 - Coding Specialist (Priority 1)

  • Specialization: Advanced coding, debugging, implementation

  • Optimal For: JavaScript, Python, API development, refactoring, game development

  • Routing: Automatic for coding patterns and task_type: 'coding'

  • Example Providers: OpenAI GPT-4, Anthropic Claude, Qwen via NVIDIA API, Codestral, etc.

Cloud Backend 2 - Analysis Specialist (Priority 2)

  • Specialization: Mathematical analysis, research, strategy

  • Features: Advanced reasoning capabilities with thinking process

  • Optimal For: Game balance, statistical analysis, strategic planning

  • Routing: Automatic for analysis patterns and math/research tasks

  • Example Providers: DeepSeek via NVIDIA/custom API, Claude Opus, GPT-4 Advanced, etc.

Local Backend - Unlimited Tokens (Priority 3)

  • Specialization: Large context processing, unlimited capacity

  • Optimal For: Processing large files (>50KB), extensive documentation, massive codebases

  • Routing: Automatic for large prompts and unlimited token requirements

  • Example Providers: Any local model via LM Studio, Ollama, vLLM - DeepSeek, Llama, Mistral, Qwen, etc.

Cloud Backend 3 - General Purpose (Priority 4)

  • Specialization: General-purpose tasks, additional fallback capacity

  • Optimal For: Diverse tasks, backup routing, multi-modal capabilities

  • Routing: Fallback and general-purpose queries

  • Example Providers: Google Gemini, Azure OpenAI, AWS Bedrock, Anthropic Claude, etc.

🎨 Example Configuration: The default setup uses LM Studio (local) + NVIDIA API (cloud), but you can configure ANY providers. See EXTENDING.md for step-by-step instructions on integrating OpenAI, Anthropic, Azure, AWS, or custom APIs.

🧠 Smart Routing Intelligence

Advanced content analysis with empirical learning:

// Smart Routing Decision Tree if (prompt.length > 50,000) → Local Backend (unlimited capacity) else if (math/analysis patterns detected) → Cloud Backend 2 (analysis specialist) else if (coding patterns detected) → Cloud Backend 1 (coding specialist) else → Default to Cloud Backend 1 (highest priority)

Pattern Recognition:

  • Coding Patterns: function|class|debug|implement|javascript|python|api|optimize

  • Math/Analysis Patterns: analyze|calculate|statistics|balance|metrics|research|strategy

  • Large Context: File size >100KB or prompt length >50,000 characters

🚀 Quick Setup

1. Install Dependencies

cd . npm install

2. Test Connection

npm test

3. Add to Claude Code Configuration

Production Multi-Backend Configuration:

{ "mcpServers": { "smart-ai-bridge": { "command": "node", "args": ["smart-ai-bridge.js"], "cwd": ".", "env": { "LOCAL_MODEL_ENDPOINT": "http://localhost:1234/v1", "CLOUD_API_KEY_1": "your-cloud-api-key-1", "CLOUD_API_KEY_2": "your-cloud-api-key-2", "CLOUD_API_KEY_3": "your-cloud-api-key-3" } } } }

Note: Example configuration uses LM Studio for local endpoint and NVIDIA API for cloud backends, but you can configure ANY providers (OpenAI, Anthropic, Azure, AWS Bedrock, etc.). The LOCAL_MODEL_ENDPOINT should point to your local model server (localhost, 127.0.0.1, or WSL2/remote IP).

4. Restart Claude Code

🛠️ Available Tools (19 Total)

💰 Token-Saving Tools (v1.4.0+)

analyze_file - 90% Token Savings

Local LLM reads and analyzes files, returning only structured findings to Claude.

Example:

@analyze_file({ filePath: "/src/auth.js", question: "What are the security vulnerabilities?", options: { analysisType: "security" } }) // Returns: Structured findings, not the file content

modify_file - 95% Token Savings

Local LLM applies natural language edits. Claude never sees the full file.

Example:

@modify_file({ filePath: "/src/api.js", instructions: "Add rate limiting to all API endpoints", options: { review: true } // Returns diff for approval })

batch_modify - 95% Token Savings Per File

Apply the same natural language instructions across multiple files.

Example:

@batch_modify({ files: ["src/**/*.js"], instructions: "Add error handling to all async functions" })

🤝 Multi-AI Workflow Tools (v1.5.0+)

council - Multi-AI Consensus

Get consensus from multiple AI backends on complex decisions.

Example:

@council({ prompt: "What's the best architecture for this microservices system?", topic: "architecture", confidence_needed: "high" // Uses 4 backends })

dual_iterate - Generate→Review→Fix Loop

Internal iteration between coding and reasoning models.

Example:

@dual_iterate({ task: "Write a function that validates email addresses", quality_threshold: 0.7, max_iterations: 3 }) // Returns only final approved code

parallel_agents - TDD Workflow

Execute multiple TDD agents with quality gates.

Example:

@parallel_agents({ task: "Implement OAuth2 authentication", max_parallel: 2, iterate_until_quality: true })

🤖 AI Routing Tools (v1.3.0+)

ask - Smart Multi-Backend Routing

AI query with automatic backend selection based on task.

Example:

@ask({ prompt: "Implement a game inventory system", model: "auto" // Let MKG route intelligently })

spawn_subagent - Specialized AI Roles

Spawn specialized AI agents for specific tasks.

Available Roles:

Role

Purpose

code-reviewer

Quality review, best practices

security-auditor

Vulnerability detection, OWASP

planner

Task breakdown, dependencies

refactor-specialist

Code improvement suggestions

test-generator

Test suite generation

documentation-writer

Documentation creation

tdd-decomposer

Break into TDD subtasks

tdd-test-writer

RED phase - failing tests

tdd-implementer

GREEN phase - implementation

tdd-quality-reviewer

Quality gate validation

Example:

@spawn_subagent({ role: "security-auditor", task: "Audit the authentication module for vulnerabilities" })

🧠 Intelligence Tools (v1.6.0+)

Search learned patterns using semantic similarity.

Example:

@pattern_search({ query: "authentication error handling" })

playbook_run - Workflow Automation

Run predefined workflow playbooks.

Built-in Playbooks:

Playbook

Steps

Purpose

tdd-feature

6

Full TDD cycle for new features

bug-fix

5

Systematic bug resolution

code-review

4

Comprehensive code review

refactor

5

Safe code refactoring

documentation

4

Documentation generation

Example:

@playbook_run({ playbook: "tdd-feature", context: { feature: "OAuth2" } })

🔧 Infrastructure Tools

health - Backend Health Monitoring

Check status of all AI backends with circuit breaker status.

Example:

@health() // Returns: Backend status, circuit breaker state, response times

system_metrics - Performance Statistics

Get comprehensive system metrics and usage analytics.

write_files_atomic - Atomic File Writes

Write multiple files atomically with automatic backup.

📋 Task Types & Smart Routing

Automatic Endpoint Selection by Task Type

Coding Tasks → Cloud Backend 1 (Coding Specialist)

  • coding: General programming, implementation, development

  • debugging: Bug fixes, error resolution, troubleshooting

  • refactoring: Code optimization, restructuring, cleanup

  • game_dev: Game development, Unity/Unreal scripting, game logic

Analysis Tasks → Cloud Backend 2 (Analysis Specialist)

  • analysis: Code review, technical analysis, research

  • math: Mathematical calculations, statistics, algorithms

  • architecture: System design, planning, strategic decisions

  • balance: Game balance, progression systems, metrics analysis

Large Context Tasks → Local Backend (Unlimited Tokens)

  • unlimited: Large file processing, extensive documentation

  • Auto-routing: Prompts >50,000 characters or files >100KB

Task Type Benefits

Cloud Backend 1 (Coding) Advantages:

  • Latest coding knowledge and best practices

  • Advanced debugging and optimization techniques

  • Game development expertise and Unity/Unreal patterns

  • Modern JavaScript/Python/TypeScript capabilities

Cloud Backend 2 (Analysis) Advantages:

  • Advanced reasoning with thinking process visualization

  • Complex mathematical analysis and statistics

  • Strategic planning and architectural design

  • Game balance and progression system analysis

Local Backend Advantages:

  • Unlimited token capacity for massive contexts

  • Privacy for sensitive code and proprietary information

  • No API rate limits or usage restrictions

  • Ideal for processing entire codebases

🔧 Configuration & Requirements

Multi-Backend Configuration

The system is pre-configured with 4 backends (expandable via EXTENDING.md):

Local Backend Endpoint

  • URL: http://localhost:1234/v1 (configure for your local model server)

  • Example Setup: LM Studio, Ollama, vLLM, or custom OpenAI-compatible endpoint

  • Requirements:

    • Local model server running (LM Studio/Ollama/vLLM/etc.)

    • Server bound to 0.0.0.0:1234 (not 127.0.0.1 for WSL2 compatibility)

    • Firewall allowing connections if running on separate machine

Cloud Backend Endpoints

  • Example Configuration: NVIDIA API, OpenAI, Anthropic, Azure OpenAI, AWS Bedrock, etc.

  • API Keys: Required (set via environment variables for each provider)

  • Endpoint URLs: Configure based on your chosen providers

  • Models: Any models available from your providers (see EXTENDING.md for integration)

Cross-Platform Support

Windows (WSL2)

# WSL2 IP for local model (if running on Windows host) export LOCAL_MODEL_ENDPOINT="http://172.23.16.1:1234/v1"

Linux

# Direct localhost for Linux export LOCAL_MODEL_ENDPOINT="http://127.0.0.1:1234/v1"

macOS

# Standard localhost for macOS export LOCAL_MODEL_ENDPOINT="http://localhost:1234/v1"

Environment Variables

# Example using NVIDIA API (configure for your chosen providers) export CLOUD_API_KEY_1="your-cloud-provider-key" export CLOUD_API_KEY_2="your-cloud-provider-key" export CLOUD_API_KEY_3="your-cloud-provider-key" # Local model endpoint export LOCAL_MODEL_ENDPOINT="http://localhost:1234/v1" # Optional: Enable TDD mode for testing export TDD_MODE="true" # MCP-Compliant Logging Configuration # Options: silent, error, warn, info, debug # Production: Use 'error' or 'warn' for minimal logging # Development: Use 'info' or 'debug' for full diagnostics export MCP_LOG_LEVEL="info"

MCP-Compliant Logging

CRITICAL: This server is fully MCP protocol compliant and prevents the "stdout contamination" issue that breaks Claude Desktop.

Understanding MCP Logging Requirements

The Model Context Protocol (MCP) has strict requirements for stdio-based servers:

  • stdout → ONLY JSON-RPC messages (protocol communication)

  • stderr → Logging, diagnostics, debug output (captured by Claude Desktop)

Common Issue: Using console.log() writes to stdout and breaks MCP communication with errors like:

SyntaxError: Unexpected token 'C', "Conversati"... is not valid JSON

Our Solution: MCP-Compliant Logger

All logging in Smart AI Bridge uses console.error() (stderr) to maintain protocol compliance:

// ✅ CORRECT - MCP compliant (stderr) import { logger } from './mcp-logger.js'; logger.info('Server started'); logger.debug('Routing decision:', backend); logger.error('Fatal error:', error); // ❌ WRONG - Breaks MCP protocol (stdout) console.log('Message'); // Will cause JSON parse errors in Claude Desktop

Log Levels

Control logging verbosity via MCP_LOG_LEVEL environment variable:

Level

Description

Use Case

silent

No logging output

Production with external monitoring

error

Errors only

Minimal production logging

warn

Warnings + errors

Recommended for production

info

Info + warnings + errors

Default - Development/staging

debug

All messages including debug

Verbose debugging

Configuration Examples

Production (minimal logging):

export MCP_LOG_LEVEL="warn" # or in .env file: MCP_LOG_LEVEL=warn

Development (full diagnostics):

export MCP_LOG_LEVEL="debug" # Shows detailed routing decisions, backend health checks, etc.

Silent mode (external logging):

export MCP_LOG_LEVEL="silent" # All logging suppressed, useful when piping stderr to monitoring tools

Claude Desktop Log Files

Claude Desktop automatically captures all stderr output to log files:

  • macOS: ~/Library/Logs/Claude/mcp-server-smart-ai-bridge.log

  • Windows: %APPDATA%\Claude\Logs\mcp-server-smart-ai-bridge.log

  • Linux: ~/.config/Claude/logs/mcp-server-smart-ai-bridge.log

Troubleshooting MCP Protocol Issues

If you see JSON parse errors in Claude Desktop:

  1. Check for stdout contamination:

    grep -r "console\.log" --include="*.js" --exclude-dir=node_modules
  2. Verify all logging uses stderr:

    • All logs should use logger.info(), logger.debug(), etc.

    • Or console.error() directly (not console.log())

  3. Test with silent mode:

    MCP_LOG_LEVEL=silent npm start # Should produce NO stderr output
  4. View captured logs:

    # macOS/Linux tail -f ~/Library/Logs/Claude/mcp-server-smart-ai-bridge.log

🎮 Optimization Pipeline Workflow

Discovery → Implementation → Validation - The proven pattern for high-quality results:

1. Discovery Phase (DeepSeek Analysis)

@query_deepseek( prompt="Analyze [specific code file] for performance bottlenecks. Focus on: - Line-specific issues with exact line numbers - Quantified performance impact estimates - Memory allocation patterns - Cache efficiency opportunities Provide actionable findings, not generic advice.", task_type="analysis" )

2. Implementation Phase (Specialist Handoff)

  • DeepSeek provides line-specific findings

  • Unity/React/Backend specialist implements changes

  • Focus on measurable improvements (0.3-0.4ms reductions)

3. Validation Phase (DeepSeek Verification)

@query_deepseek( prompt="Review the implemented optimizations in [code]: - Verify changes address identified bottlenecks - Estimate performance impact of each change - Identify any new issues introduced - Suggest ProfilerMarker placement for measurement", task_type="debugging" )

🎯 Success Patterns

  • Specific Analysis: Line numbers, exact metrics, concrete findings

  • Quantified Impact: "0.3ms reduction", "30% fewer allocations"

  • Measurable Results: ProfilerMarkers, before/after comparisons

🔄 Usage Templates

Performance Analysis Template

@query_deepseek( prompt="Analyze [YourFile.cs] for performance bottlenecks. Focus on: - Line-specific issues with exact line numbers - Quantified performance impact estimates - Memory allocation patterns - Cache efficiency opportunities Provide actionable findings, not generic advice.", task_type="analysis" )

Code Review Template

@query_deepseek( prompt="Review [YourController.cs] for potential issues. Focus on: - Exact line numbers with null reference risks - Resource leak patterns with impact estimates - Thread safety concerns with scenarios - Error handling completeness gaps Provide line-specific findings with risk levels.", task_type="analysis" )

Optimization Validation Template

@query_deepseek( prompt="Review the implemented optimizations in [UpdatedFile.cs]: Original issues: [paste DeepSeek findings here] Verify each optimization addresses the original bottleneck. Estimate performance impact of each change. Identify any new issues introduced. Suggest ProfilerMarker placement for measurement.", task_type="debugging" )

Complex Implementation Template

@query_deepseek( prompt="Implement [specific system] with these requirements: [detailed requirements list] Provide complete, production-ready code with: - Error handling and edge cases - Performance considerations - Unit test examples - Integration patterns", task_type="game_dev" )

📁 File Access Architecture

Smart File Size Routing

The system automatically routes files based on size for optimal performance:

// Routing Logic if (fileSize > 100KB) → Local Backend (unlimited tokens) else if (fileSize > 10KB) → Intelligent routing based on content else if (fileSize < 10KB) → Smart endpoint selection

File Processing Strategies

Instant Processing (<1KB files)

  • Strategy: Direct memory read with 1-second timeout

  • Performance: <1ms processing time

  • Use Cases: Configuration files, small scripts, JSON configs

Fast Processing (1KB-10KB files)

  • Strategy: Standard file read with 3-second timeout

  • Performance: <100ms processing time

  • Use Cases: Component files, utility functions, small modules

Standard Processing (10KB-100KB files)

  • Strategy: Buffered read with 5-second timeout

  • Performance: <500ms processing time

  • Use Cases: Large components, documentation, medium codebases

Chunked Processing (>100KB files)

  • Strategy: Streaming with 50MB memory limit

  • Performance: Chunked with progress tracking

  • Use Cases: Large log files, extensive documentation, complete codebases

Cross-Platform Path Handling

Windows Support

// Automatic path normalization "C:\Users\project\file.js" → "C:/Users/project/file.js" // WSL path translation "/mnt/c/Users/project" → "C:/Users/project"

Security Validation

  • Path Traversal Protection: Blocks ../ and absolute path escapes

  • Malicious Content Detection: Scans for suspicious patterns

  • File Size Limits: Prevents memory exhaustion attacks

  • Permission Validation: Ensures safe file access

Batch Processing Optimization

Concurrent Processing

  • Batch Size: Up to 5 files concurrently

  • Memory Management: 50MB total limit per batch

  • Strategy Selection: Based on total size and file count

  • Performance Monitoring: Real-time processing metrics

Intelligent Batching

if (totalSize > 100KB) → "local_endpoint_chunked" else if (fileCount > 10) → "concurrent_limited" else → "standard_parallel"

🐛 Troubleshooting & Diagnostics

Multi-Backend Issues

Local Backend Connection

# Test local endpoint (adjust IP for your setup) curl http://localhost:1234/v1/models # Check local model server status 1. Verify local model server is running (LM Studio/Ollama/vLLM/etc.) 2. Confirm model is loaded and ready 3. Ensure server binding is 0.0.0.0:1234 (not 127.0.0.1 for WSL2) 4. Check firewall rules if running on separate machine

Cloud Backend Issues

# Test cloud API access (example using NVIDIA API) curl -H "Authorization: Bearer $CLOUD_API_KEY_1" \ https://integrate.api.nvidia.com/v1/models # Common fixes: 1. Verify API keys are set correctly for your providers 2. Check API key permissions and rate limits 3. Ensure internet connectivity 4. Validate model names and endpoint URLs in configuration

File Access Issues

Permission Problems

// Use diagnose_file_access tool (when implemented) @diagnose_file_access(filePath="/path/to/problematic/file") // Manual checks: 1. Verify file exists and is readable 2. Check path normalization (Windows vs Unix) 3. Validate security constraints 4. Test with smaller file sizes first

Cross-Platform Path Issues

# Windows (WSL2) - Use forward slashes: "/mnt/c/project/file.js" - Avoid Windows drive letters in WSL context # Linux/macOS - Standard Unix paths work normally - Ensure proper permissions on file system

MCP Server Issues

Server Startup Problems

# Diagnostics 1. Check Node.js version: node --version (>=18 required) 2. Install dependencies: npm install 3. Test server: npm test 4. Check server logs: tail -f ~/.claude-code/logs/server.log

Tool Registration Issues

# Verify MCP tools are registered @check_deepseek_status() # If tools missing: 1. Restart Claude Code completely 2. Check configuration file syntax 3. Verify file paths in config 4. Test with minimal configuration first

Performance Optimization

Slow File Processing

  • Large Files: Automatically routed to Local Backend for unlimited processing

  • Batch Operations: Use concurrent processing for multiple small files

  • Memory Issues: Files >50MB trigger streaming mode with memory protection

Routing Performance

  • Pattern Matching: Smart routing uses optimized regex patterns

  • Endpoint Health: Unhealthy endpoints trigger automatic fallback

  • Usage Statistics: Monitor routing decisions for optimization

📁 Project Architecture

smart-ai-bridge v1.6.0/ ├── Core Server │ ├── smart-ai-bridge.js # Main MCP server (19 tools) │ ├── path-security.js # Path validation │ ├── circuit-breaker.js # Health monitoring and failover │ └── config.js # Configuration management │ ├── Security Modules │ ├── auth-manager.js # Authentication and authorization │ ├── input-validator.js # Input validation and type checking │ ├── rate-limiter.js # Rate limiting and DoS protection │ ├── error-sanitizer.js # Error message sanitization │ └── metrics-collector.js # Performance and security metrics │ ├── Handlers (v1.4.0-v1.5.0) │ ├── subagent-handler.js # 10 specialized roles │ ├── analyze-file-handler.js # 90% token savings │ ├── modify-file-handler.js # 95% token savings │ ├── batch-modify-handler.js # 95% token savings │ ├── council-handler.js # Multi-AI consensus │ ├── dual-iterate-handler.js # Generate→Review→Fix │ └── parallel-agents-handler.js # TDD workflow │ ├── Intelligence (v1.6.0) │ ├── compound-learning.js # Enhanced with decay, complexity │ ├── pattern-rag-store.js # TF-IDF pattern memory │ └── playbook-system.js # 5 built-in workflows │ ├── Config │ └── role-templates.js # 10 subagent roles (incl. TDD) │ ├── Backends │ └── backend-adapters.js # Circuit breakers, health checks │ ├── Tests │ ├── test-v1.4.0-handlers.js │ └── test-v1.5.0-handlers.js │ └── Documentation ├── README.md # This guide ├── EXTENDING.md # Backend integration guide ├── CONFIGURATION.md # Configuration reference └── CHANGELOG.md # Version history

Key Components

Core Server

  • smart-ai-bridge.js: Main MCP server with 19 production tools

  • circuit-breaker.js: Health monitoring, automatic failover, and endpoint management

  • config.js: Centralized configuration with environment variable support

Handlers (Token-Saving)

  • analyze-file-handler.js: 90% token savings - local LLM reads files

  • modify-file-handler.js: 95% token savings - local LLM applies NL edits

  • batch-modify-handler.js: 95% savings per file for multi-file edits

  • council-handler.js: Multi-AI consensus from 2-4 backends

  • dual-iterate-handler.js: Internal generate→review→fix loop

  • parallel-agents-handler.js: TDD workflow with quality gates

Intelligence Layer (v1.6.0)

  • pattern-rag-store.js: TF-IDF semantic search for learned patterns

  • playbook-system.js: 5 built-in workflow playbooks

  • compound-learning.js: Adaptive routing with decay and complexity scoring

Security Layer (8.7/10 Security Score)

  • auth-manager.js: Authentication and authorization controls

  • input-validator.js: Comprehensive input validation and type checking

  • rate-limiter.js: DoS protection (60/min, 500/hr, 5000/day)

  • error-sanitizer.js: Secure error handling and message sanitization

  • metrics-collector.js: Performance monitoring and abuse detection

📚 Documentation Resources

🎯 Core Documentation

Extending the Backend System

Guide to adding custom AI backends:

  • How to add new AI providers (OpenAI, Anthropic, custom APIs)

  • Backend configuration and integration patterns

  • Health check implementation for custom endpoints

  • Smart routing configuration for new backends

  • Best practices for multi-backend orchestration

Configuration Reference

Complete configuration guide:

  • Environment variables for all features

  • Security and rate limiting configuration

  • Intelligence layer settings (v1.6.0)

  • Multi-backend setup options

Changelog

Version history with detailed release notes:

  • v1.6.0: Intelligence layer, pattern learning, playbooks

  • v1.5.0: Multi-AI workflows (council, dual_iterate, parallel_agents)

  • v1.4.0: Token-saving tools (analyze_file, modify_file, batch_modify)

  • v1.3.0: Backend adapters, learning engine, subagent system

Troubleshooting Guide

Common issues and solutions:

  • Backend connection issues

  • Performance optimization

  • Common error patterns

🎯 Deployment & Success Criteria

Production Deployment Checklist

Pre-Deployment

  • Node.js version >=18 installed

  • Cloud provider API keys obtained (if using cloud backends)

  • Local model server running and accessible (if using local backend)

  • File permissions configured correctly

Deployment Steps

  1. Install Dependencies: npm install

  2. Test System: npm test (all tests should pass)

  3. Configure Environment:

    export CLOUD_API_KEY_1="your-cloud-provider-key" export CLOUD_API_KEY_2="your-cloud-provider-key" export CLOUD_API_KEY_3="your-cloud-provider-key" export LOCAL_MODEL_ENDPOINT="http://localhost:1234/v1" # Configure for your local model server
  4. Update Claude Code Config: Use production configuration from above (smart-ai-bridge.js)

  5. Restart Claude Code: Full restart required for new tools

  6. Verify Deployment: @health()

Success Verification

Multi-Backend Status

  • ✅ Local backend endpoint online and responsive (if configured)

  • ✅ Cloud Backend 1 (coding specialist) accessible

  • ✅ Cloud Backend 2 (analysis specialist) accessible

  • ✅ Cloud Backend 3 (general purpose) accessible (if configured)

  • ✅ Smart routing working based on task type

File Processing System

  • ✅ File analysis tools available in Claude Code

  • ✅ Cross-platform path handling working

  • ✅ Security validation preventing malicious content

  • ✅ Concurrent processing for multiple files

  • ✅ Large file routing to Local Backend (>100KB)

Advanced Features

  • ✅ Intelligent routing based on content analysis

  • ✅ Fallback system working when primary endpoints fail

  • ✅ Capability messaging showing which AI handled requests

  • ✅ Performance monitoring and usage statistics

  • ✅ Claude Desktop JSON compliance

Performance Benchmarks

File Processing Performance

  • Instant Processing: <1KB files in <1ms

  • Fast Processing: 1KB-10KB files in <100ms

  • Standard Processing: 10KB-100KB files in <500ms

  • Chunked Processing: >100KB files with progress tracking

Routing Performance

  • Smart Routing: Pattern recognition in <10ms

  • Endpoint Selection: Decision making in <5ms

  • Fallback Response: Backup endpoint activation in <1s

Quality Assurance

Test Coverage

  • Unit Tests: 100% pass rate with comprehensive coverage

  • Integration Tests: All MCP tools functional

  • Cross-Platform Tests: Windows/WSL/Linux compatibility

  • Security Tests: 9.7/10 security score validation

Monitoring

  • Usage Statistics: Endpoint utilization tracking

  • Performance Metrics: Response time monitoring

  • Error Tracking: Failure rate and fallback frequency

  • Health Checks: Automated endpoint status monitoring


🔒 Security Certification

Security Score: 8.7/10 - Production Ready with Monitoring

Standards Compliance

Standard

Score

Status

OWASP Top 10:2025

8.2/10

✅ Compliant

OWASP API Security Top 10:2023

9.2/10

✅ Strong

NIST AI Risk Management Framework

8.4/10

✅ Aligned

Automated Test Pass Rate

95%

✅ Passing

Security Features

  • Authentication: Token-based auth with tool-level permissions

  • Rate Limiting: 60/min, 500/hr, 5000/day with IP tracking

  • Input Validation: Type checking, sanitization, schema validation

  • Path Security: Traversal prevention, null byte blocking

  • Error Sanitization: Credential redaction, stack trace removal

  • Circuit Breaker: Backend resilience with automatic failover

Validation Tools

# Run full security validation ./security/validate-security.sh --full # Quick validation (essential tests) ./security/validate-security.sh --quick # CI mode (optimized for pipelines) ./security/validate-security.sh --ci

Security Documentation

Document

Description

Security Certification

Full certification with attestation

Scoring Methodology

Weighted rubric (100 points)

Security Scorecard

Detailed score breakdown

Gap Analysis

34 gaps with remediation roadmap

Validation Workflow

CI/CD integration guide

Certification ID: SAB-SEC-2025-1209-v130
Valid Until: March 9, 2026 (90 days)


🏆 System Status: PRODUCTION READY v1.6.0

Smart AI Bridge v1.6.0 is a lean, value-focused MCP server with Security Certification (8.7/10), token-saving AI operations, multi-AI workflows, and intelligent pattern learning. The system provides:

💰 Token-Saving Operations (v1.4.0+)

  • 90-95% Token Savings: Local LLM offloading via analyze_file, modify_file, batch_modify

  • Natural Language Edits: Describe changes, local LLM applies them

  • Claude Reviews Diffs: Small diffs instead of full file content

🤝 Multi-AI Workflows (v1.5.0+)

  • Council: Multi-AI consensus on complex decisions

  • Dual Iterate: Internal generate→review→fix loop

  • Parallel Agents: TDD workflow with quality gates

🧠 Intelligence Layer (v1.6.0)

  • Pattern Learning: TF-IDF semantic search for learned patterns

  • Workflow Playbooks: 5 built-in automation playbooks

  • Adaptive Routing: Learns optimal backend selection over time

🧹 Lean Tool Design

  • 19 Production Tools: Removed 5 bloat tools, added 9 value tools

  • No Passthrough: Every tool adds value beyond Claude's native capabilities

  • Focused Scope: Token-saving, workflows, and intelligence

🛡️ Enterprise-Grade Reliability

  • Security Score: 8.7/10 with comprehensive validation

  • Circuit Breakers: Automatic failover with health monitoring

  • Rate Limiting: 60/min, 500/hr, 5000/day with IP tracking

Built using Test-Driven Development (TDD) with atomic task breakdown - Zero technical debt, maximum reliability.


💰 Token-Saving | 🤝 Multi-AI Workflows | 🧠 Intelligent Learning | 🔐 Enterprise Security | 🛡️ Battle-Tested Reliability

Install Server
A
security – no known vulnerabilities
A
license - permissive license
A
quality - confirmed to work

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Platano78/Smart-AI-Bridge'

If you have feedback or need assistance with the MCP directory API, please join our Discord server