Skip to main content
Glama
PierrunoYT

fal-hidream-i1-full MCP Server

by PierrunoYT

fal-ai/hidream-i1-full MCP Server

A Model Context Protocol (MCP) server that provides access to the fal-ai/hidream-i1-full image generation model. This server allows you to generate high-quality images using advanced AI technology through the fal.ai platform.

Features

  • High-Quality Image Generation: Generate stunning images using the fal-ai/hidream-i1-full model

  • Multiple Generation Methods: Support for synchronous, streaming, and queue-based generation

  • Flexible Image Sizing: Support for predefined sizes and custom dimensions

  • Advanced Parameters: Control over inference steps, guidance scale, safety checker, and more

  • LoRA Support: Apply custom LoRA weights for specialized image styles

  • Local Image Download: Automatically downloads generated images to local storage

  • Queue Management: Submit long-running requests and check their status

  • Webhook Support: Optional webhook notifications for completed requests

Installation

  1. Clone this repository:

git clone https://github.com/PierrunoYT/fal-hidream-i1-full-mcp-server.git cd fal-hidream-i1-full-mcp-server
  1. Install dependencies:

npm install
  1. Build the project:

npm run build

Configuration

Environment Variables

Set your fal.ai API key as an environment variable:

export FAL_KEY="your_fal_api_key_here"

You can get your API key from fal.ai.

MCP Client Configuration

Add this server to your MCP client configuration. For example, in Claude Desktop's config file:

{ "mcpServers": { "fal-hidream-i1-full": { "command": "node", "args": ["/path/to/fal-hidream-i1-full-mcp-server/build/index.js"], "env": { "FAL_KEY": "your_fal_api_key_here" } } } }

Available Tools

1. hidream_i1_full_generate

Generate images using the standard synchronous method.

Parameters:

  • prompt (required): Text description of the image to generate

  • negative_prompt (optional): What you don't want in the image

  • image_size (optional): Predefined size or custom {width, height} object

  • num_inference_steps (optional): Number of inference steps (1-100, default: 50)

  • seed (optional): Random seed for reproducible results

  • guidance_scale (optional): CFG scale (1-20, default: 5)

  • sync_mode (optional): Wait for completion (default: true)

  • num_images (optional): Number of images to generate (1-4, default: 1)

  • enable_safety_checker (optional): Enable safety filtering (default: true)

  • output_format (optional): "jpeg" or "png" (default: "jpeg")

  • loras (optional): Array of LoRA weights to apply

Example:

{ "prompt": "a cat holding a skateboard which has 'fal' written on it in red spray paint", "image_size": {"width": 1024, "height": 1024}, "num_inference_steps": 50, "guidance_scale": 7.5 }

2. hidream_i1_full_generate_stream

Generate images using streaming for real-time progress updates.

Parameters: Same as hidream_i1_full_generate

3. hidream_i1_full_generate_queue

Submit a long-running image generation request to the queue.

Parameters: Same as hidream_i1_full_generate plus:

  • webhook_url (optional): URL for webhook notifications

Returns: A request ID for tracking the job

4. hidream_i1_full_queue_status

Check the status of a queued request.

Parameters:

  • request_id (required): The request ID from queue submission

  • logs (optional): Include logs in response (default: true)

5. hidream_i1_full_queue_result

Get the result of a completed queued request.

Parameters:

  • request_id (required): The request ID from queue submission

Image Sizes

Predefined Sizes

  • square_hd: High-definition square

  • square: Standard square

  • portrait_4_3: Portrait 4:3 aspect ratio

  • portrait_16_9: Portrait 16:9 aspect ratio

  • landscape_4_3: Landscape 4:3 aspect ratio

  • landscape_16_9: Landscape 16:9 aspect ratio

Custom Sizes

You can also specify custom dimensions:

{ "image_size": { "width": 1280, "height": 720 } }

LoRA Support

Apply custom LoRA weights for specialized styles:

{ "loras": [ { "path": "https://example.com/lora-weights.safetensors", "scale": 1.0, "weight_name": "optional_weight_name" } ] }

Output

Generated images are automatically downloaded to a local images/ directory with descriptive filenames. The response includes:

  • Local file paths

  • Original URLs

  • Image dimensions

  • Content types

  • Generation parameters used

  • Request IDs for tracking

Error Handling

The server provides detailed error messages for:

  • Missing API keys

  • Invalid parameters

  • Network issues

  • API rate limits

  • Generation failures

Development

Running in Development Mode

npm run dev

Testing the Server

npm test

Getting the Installation Path

npm run get-path

API Reference

This server implements the fal-ai/hidream-i1-full API. For detailed API documentation, visit:

License

MIT License - see LICENSE file for details.

Contributing

  1. Fork the repository

  2. Create a feature branch

  3. Make your changes

  4. Add tests if applicable

  5. Submit a pull request

Support

For issues and questions:

Changelog

v2.0.0

  • Complete rewrite to use fal-ai/hidream-i1-full API

  • Added streaming support

  • Added queue management

  • Added LoRA support

  • Improved error handling

  • Updated to latest MCP SDK

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/PierrunoYT/fal-hidream-i1-full-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server