Skip to main content
Glama
test_table_cells_detection.py1.07 kB
import pytest from paddleocr import TableCellsDetection from ..testing_utils import ( TEST_DATA_DIR, check_simple_inference_result, check_wrapper_simple_inference_param_forwarding, ) from .object_detection_common import check_result_item_keys @pytest.fixture(scope="module") def table_cells_detection_predictor(): return TableCellsDetection() @pytest.mark.parametrize( "image_path", [ TEST_DATA_DIR / "table.jpg", ], ) def test_predict(table_cells_detection_predictor, image_path): result = table_cells_detection_predictor.predict(str(image_path)) check_simple_inference_result(result) check_result_item_keys(result[0]) @pytest.mark.parametrize( "params", [ {"img_size": 640}, {"threshold": 0.5}, ], ) def test_predict_params( monkeypatch, table_cells_detection_predictor, params, ): check_wrapper_simple_inference_param_forwarding( monkeypatch, table_cells_detection_predictor, "paddlex_predictor", "dummy_path", params, )

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/PaddlePaddle/PaddleOCR'

If you have feedback or need assistance with the MCP directory API, please join our Discord server