Skip to main content
Glama
test_doc_vlm.py1.02 kB
import pytest from paddleocr import DocVLM from ..testing_utils import ( TEST_DATA_DIR, check_simple_inference_result, check_wrapper_simple_inference_param_forwarding, ) @pytest.fixture(scope="module") def doc_vlm_predictor(): return DocVLM() @pytest.mark.resource_intensive @pytest.mark.parametrize( "image_path", [ TEST_DATA_DIR / "medal_table.png", ], ) def test_predict(doc_vlm_predictor, image_path): result = doc_vlm_predictor.predict(str(image_path)) check_simple_inference_result(result) assert result[0].keys() == { "input_path", "page_index", "input_img", "result", } @pytest.mark.resource_intensive @pytest.mark.parametrize( "params", [ {}, ], ) def test_predict_params( monkeypatch, doc_vlm_predictor, params, ): check_wrapper_simple_inference_param_forwarding( monkeypatch, doc_vlm_predictor, "paddlex_predictor", "dummy_path", params, )

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/PaddlePaddle/PaddleOCR'

If you have feedback or need assistance with the MCP directory API, please join our Discord server