# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from .._utils.cli import (
add_simple_inference_args,
get_subcommand_args,
perform_simple_inference,
str2bool,
)
from .base import PaddleXPipelineWrapper, PipelineCLISubcommandExecutor
from .utils import create_config_from_structure
_SUPPORTED_OCR_VERSIONS = ["PP-OCRv3", "PP-OCRv4", "PP-OCRv5"]
class PPStructureV3(PaddleXPipelineWrapper):
def __init__(
self,
layout_detection_model_name=None,
layout_detection_model_dir=None,
layout_threshold=None,
layout_nms=None,
layout_unclip_ratio=None,
layout_merge_bboxes_mode=None,
chart_recognition_model_name=None,
chart_recognition_model_dir=None,
chart_recognition_batch_size=None,
region_detection_model_name=None,
region_detection_model_dir=None,
doc_orientation_classify_model_name=None,
doc_orientation_classify_model_dir=None,
doc_unwarping_model_name=None,
doc_unwarping_model_dir=None,
text_detection_model_name=None,
text_detection_model_dir=None,
text_det_limit_side_len=None,
text_det_limit_type=None,
text_det_thresh=None,
text_det_box_thresh=None,
text_det_unclip_ratio=None,
textline_orientation_model_name=None,
textline_orientation_model_dir=None,
textline_orientation_batch_size=None,
text_recognition_model_name=None,
text_recognition_model_dir=None,
text_recognition_batch_size=None,
text_rec_score_thresh=None,
table_classification_model_name=None,
table_classification_model_dir=None,
wired_table_structure_recognition_model_name=None,
wired_table_structure_recognition_model_dir=None,
wireless_table_structure_recognition_model_name=None,
wireless_table_structure_recognition_model_dir=None,
wired_table_cells_detection_model_name=None,
wired_table_cells_detection_model_dir=None,
wireless_table_cells_detection_model_name=None,
wireless_table_cells_detection_model_dir=None,
table_orientation_classify_model_name=None,
table_orientation_classify_model_dir=None,
seal_text_detection_model_name=None,
seal_text_detection_model_dir=None,
seal_det_limit_side_len=None,
seal_det_limit_type=None,
seal_det_thresh=None,
seal_det_box_thresh=None,
seal_det_unclip_ratio=None,
seal_text_recognition_model_name=None,
seal_text_recognition_model_dir=None,
seal_text_recognition_batch_size=None,
seal_rec_score_thresh=None,
formula_recognition_model_name=None,
formula_recognition_model_dir=None,
formula_recognition_batch_size=None,
use_doc_orientation_classify=None,
use_doc_unwarping=None,
use_textline_orientation=None,
use_seal_recognition=None,
use_table_recognition=None,
use_formula_recognition=None,
use_chart_recognition=None,
use_region_detection=None,
lang=None,
ocr_version=None,
**kwargs,
):
if ocr_version is not None and ocr_version not in _SUPPORTED_OCR_VERSIONS:
raise ValueError(
f"Invalid OCR version: {ocr_version}. Supported values are {_SUPPORTED_OCR_VERSIONS}."
)
if all(
map(
lambda p: p is None,
(
text_detection_model_name,
text_detection_model_dir,
text_recognition_model_name,
text_recognition_model_dir,
),
)
):
if lang is not None or ocr_version is not None:
det_model_name, rec_model_name = self._get_ocr_model_names(
lang, ocr_version
)
if det_model_name is None or rec_model_name is None:
raise ValueError(
f"No models are available for the language {repr(lang)} and OCR version {repr(ocr_version)}."
)
text_detection_model_name = det_model_name
text_recognition_model_name = rec_model_name
else:
if lang is not None or ocr_version is not None:
warnings.warn(
"`lang` and `ocr_version` will be ignored when model names or model directories are not `None`.",
stacklevel=2,
)
params = locals().copy()
params["text_detection_model_name"] = text_detection_model_name
params["text_recognition_model_name"] = text_recognition_model_name
params.pop("self")
params.pop("kwargs")
self._params = params
super().__init__(**kwargs)
@property
def _paddlex_pipeline_name(self):
return "PP-StructureV3"
def predict_iter(
self,
input,
*,
use_doc_orientation_classify=None,
use_doc_unwarping=None,
use_textline_orientation=None,
use_seal_recognition=None,
use_table_recognition=None,
use_formula_recognition=None,
use_chart_recognition=None,
use_region_detection=None,
layout_threshold=None,
layout_nms=None,
layout_unclip_ratio=None,
layout_merge_bboxes_mode=None,
text_det_limit_side_len=None,
text_det_limit_type=None,
text_det_thresh=None,
text_det_box_thresh=None,
text_det_unclip_ratio=None,
text_rec_score_thresh=None,
seal_det_limit_side_len=None,
seal_det_limit_type=None,
seal_det_thresh=None,
seal_det_box_thresh=None,
seal_det_unclip_ratio=None,
seal_rec_score_thresh=None,
use_wired_table_cells_trans_to_html=False,
use_wireless_table_cells_trans_to_html=False,
use_table_orientation_classify=True,
use_ocr_results_with_table_cells=True,
use_e2e_wired_table_rec_model=False,
use_e2e_wireless_table_rec_model=True,
**kwargs,
):
return self.paddlex_pipeline.predict(
input,
use_doc_orientation_classify=use_doc_orientation_classify,
use_doc_unwarping=use_doc_unwarping,
use_textline_orientation=use_textline_orientation,
use_seal_recognition=use_seal_recognition,
use_table_recognition=use_table_recognition,
use_formula_recognition=use_formula_recognition,
use_chart_recognition=use_chart_recognition,
use_region_detection=use_region_detection,
layout_threshold=layout_threshold,
layout_nms=layout_nms,
layout_unclip_ratio=layout_unclip_ratio,
layout_merge_bboxes_mode=layout_merge_bboxes_mode,
text_det_limit_side_len=text_det_limit_side_len,
text_det_limit_type=text_det_limit_type,
text_det_thresh=text_det_thresh,
text_det_box_thresh=text_det_box_thresh,
text_det_unclip_ratio=text_det_unclip_ratio,
text_rec_score_thresh=text_rec_score_thresh,
seal_det_limit_side_len=seal_det_limit_side_len,
seal_det_limit_type=seal_det_limit_type,
seal_det_thresh=seal_det_thresh,
seal_det_box_thresh=seal_det_box_thresh,
seal_det_unclip_ratio=seal_det_unclip_ratio,
seal_rec_score_thresh=seal_rec_score_thresh,
use_wired_table_cells_trans_to_html=use_wired_table_cells_trans_to_html,
use_wireless_table_cells_trans_to_html=use_wireless_table_cells_trans_to_html,
use_table_orientation_classify=use_table_orientation_classify,
use_ocr_results_with_table_cells=use_ocr_results_with_table_cells,
use_e2e_wired_table_rec_model=use_e2e_wired_table_rec_model,
use_e2e_wireless_table_rec_model=use_e2e_wireless_table_rec_model,
**kwargs,
)
def predict(
self,
input,
*,
use_doc_orientation_classify=None,
use_doc_unwarping=None,
use_textline_orientation=None,
use_seal_recognition=None,
use_table_recognition=None,
use_formula_recognition=None,
use_chart_recognition=None,
use_region_detection=None,
layout_threshold=None,
layout_nms=None,
layout_unclip_ratio=None,
layout_merge_bboxes_mode=None,
text_det_limit_side_len=None,
text_det_limit_type=None,
text_det_thresh=None,
text_det_box_thresh=None,
text_det_unclip_ratio=None,
text_rec_score_thresh=None,
seal_det_limit_side_len=None,
seal_det_limit_type=None,
seal_det_thresh=None,
seal_det_box_thresh=None,
seal_det_unclip_ratio=None,
seal_rec_score_thresh=None,
use_wired_table_cells_trans_to_html=False,
use_wireless_table_cells_trans_to_html=False,
use_table_orientation_classify=True,
use_ocr_results_with_table_cells=True,
use_e2e_wired_table_rec_model=False,
use_e2e_wireless_table_rec_model=True,
**kwargs,
):
return list(
self.predict_iter(
input,
use_doc_orientation_classify=use_doc_orientation_classify,
use_doc_unwarping=use_doc_unwarping,
use_textline_orientation=use_textline_orientation,
use_seal_recognition=use_seal_recognition,
use_table_recognition=use_table_recognition,
use_formula_recognition=use_formula_recognition,
use_chart_recognition=use_chart_recognition,
use_region_detection=use_region_detection,
layout_threshold=layout_threshold,
layout_nms=layout_nms,
layout_unclip_ratio=layout_unclip_ratio,
layout_merge_bboxes_mode=layout_merge_bboxes_mode,
text_det_limit_side_len=text_det_limit_side_len,
text_det_limit_type=text_det_limit_type,
text_det_thresh=text_det_thresh,
text_det_box_thresh=text_det_box_thresh,
text_det_unclip_ratio=text_det_unclip_ratio,
text_rec_score_thresh=text_rec_score_thresh,
seal_det_limit_side_len=seal_det_limit_side_len,
seal_det_limit_type=seal_det_limit_type,
seal_det_thresh=seal_det_thresh,
seal_det_box_thresh=seal_det_box_thresh,
seal_det_unclip_ratio=seal_det_unclip_ratio,
seal_rec_score_thresh=seal_rec_score_thresh,
use_wired_table_cells_trans_to_html=use_wired_table_cells_trans_to_html,
use_wireless_table_cells_trans_to_html=use_wireless_table_cells_trans_to_html,
use_table_orientation_classify=use_table_orientation_classify,
use_ocr_results_with_table_cells=use_ocr_results_with_table_cells,
use_e2e_wired_table_rec_model=use_e2e_wired_table_rec_model,
use_e2e_wireless_table_rec_model=use_e2e_wireless_table_rec_model,
**kwargs,
)
)
def concatenate_markdown_pages(self, markdown_list):
return self.paddlex_pipeline.concatenate_markdown_pages(markdown_list)
@classmethod
def get_cli_subcommand_executor(cls):
return PPStructureV3CLISubcommandExecutor()
def _get_paddlex_config_overrides(self):
STRUCTURE = {
"SubPipelines.DocPreprocessor.use_doc_orientation_classify": self._params[
"use_doc_orientation_classify"
],
"SubPipelines.DocPreprocessor.use_doc_unwarping": self._params[
"use_doc_unwarping"
],
"use_doc_preprocessor": self._params["use_doc_orientation_classify"]
or self._params["use_doc_unwarping"],
"SubPipelines.GeneralOCR.use_textline_orientation": self._params[
"use_textline_orientation"
],
"use_seal_recognition": self._params["use_seal_recognition"],
"use_table_recognition": self._params["use_table_recognition"],
"use_formula_recognition": self._params["use_formula_recognition"],
"use_chart_recognition": self._params["use_chart_recognition"],
"use_region_detection": self._params["use_region_detection"],
"SubModules.LayoutDetection.model_name": self._params[
"layout_detection_model_name"
],
"SubModules.LayoutDetection.model_dir": self._params[
"layout_detection_model_dir"
],
"SubModules.LayoutDetection.threshold": self._params["layout_threshold"],
"SubModules.LayoutDetection.layout_nms": self._params["layout_nms"],
"SubModules.LayoutDetection.layout_unclip_ratio": self._params[
"layout_unclip_ratio"
],
"SubModules.LayoutDetection.layout_merge_bboxes_mode": self._params[
"layout_merge_bboxes_mode"
],
"SubModules.ChartRecognition.model_name": self._params[
"chart_recognition_model_name"
],
"SubModules.ChartRecognition.model_dir": self._params[
"chart_recognition_model_dir"
],
"SubModules.ChartRecognition.batch_size": self._params[
"chart_recognition_batch_size"
],
"SubModules.RegionDetection.model_name": self._params[
"region_detection_model_name"
],
"SubModules.RegionDetection.model_dir": self._params[
"region_detection_model_dir"
],
"SubPipelines.DocPreprocessor.SubModules.DocOrientationClassify.model_name": self._params[
"doc_orientation_classify_model_name"
],
"SubPipelines.DocPreprocessor.SubModules.DocOrientationClassify.model_dir": self._params[
"doc_orientation_classify_model_dir"
],
"SubPipelines.DocPreprocessor.SubModules.DocUnwarping.model_name": self._params[
"doc_unwarping_model_name"
],
"SubPipelines.DocPreprocessor.SubModules.DocUnwarping.model_dir": self._params[
"doc_unwarping_model_dir"
],
"SubPipelines.GeneralOCR.SubModules.TextDetection.model_name": self._params[
"text_detection_model_name"
],
"SubPipelines.GeneralOCR.SubModules.TextDetection.model_dir": self._params[
"text_detection_model_dir"
],
"SubPipelines.GeneralOCR.SubModules.TextDetection.limit_side_len": self._params[
"text_det_limit_side_len"
],
"SubPipelines.GeneralOCR.SubModules.TextDetection.limit_type": self._params[
"text_det_limit_type"
],
"SubPipelines.GeneralOCR.SubModules.TextDetection.thresh": self._params[
"text_det_thresh"
],
"SubPipelines.GeneralOCR.SubModules.TextDetection.box_thresh": self._params[
"text_det_box_thresh"
],
"SubPipelines.GeneralOCR.SubModules.TextDetection.unclip_ratio": self._params[
"text_det_unclip_ratio"
],
"SubPipelines.GeneralOCR.SubModules.TextLineOrientation.model_name": self._params[
"textline_orientation_model_name"
],
"SubPipelines.GeneralOCR.SubModules.TextLineOrientation.model_dir": self._params[
"textline_orientation_model_dir"
],
"SubPipelines.GeneralOCR.SubModules.TextLineOrientation.batch_size": self._params[
"textline_orientation_batch_size"
],
"SubPipelines.GeneralOCR.SubModules.TextRecognition.model_name": self._params[
"text_recognition_model_name"
],
"SubPipelines.GeneralOCR.SubModules.TextRecognition.model_dir": self._params[
"text_recognition_model_dir"
],
"SubPipelines.GeneralOCR.SubModules.TextRecognition.batch_size": self._params[
"text_recognition_batch_size"
],
"SubPipelines.GeneralOCR.SubModules.TextRecognition.score_thresh": self._params[
"text_rec_score_thresh"
],
"SubPipelines.TableRecognition.SubModules.TableClassification.model_name": self._params[
"table_classification_model_name"
],
"SubPipelines.TableRecognition.SubModules.TableClassification.model_dir": self._params[
"table_classification_model_dir"
],
"SubPipelines.TableRecognition.SubModules.WiredTableStructureRecognition.model_name": self._params[
"wired_table_structure_recognition_model_name"
],
"SubPipelines.TableRecognition.SubModules.WiredTableStructureRecognition.model_dir": self._params[
"wired_table_structure_recognition_model_dir"
],
"SubPipelines.TableRecognition.SubModules.WirelessTableStructureRecognition.model_name": self._params[
"wireless_table_structure_recognition_model_name"
],
"SubPipelines.TableRecognition.SubModules.WirelessTableStructureRecognition.model_dir": self._params[
"wireless_table_structure_recognition_model_dir"
],
"SubPipelines.TableRecognition.SubModules.WiredTableCellsDetection.model_name": self._params[
"wired_table_cells_detection_model_name"
],
"SubPipelines.TableRecognition.SubModules.WiredTableCellsDetection.model_dir": self._params[
"wired_table_cells_detection_model_dir"
],
"SubPipelines.TableRecognition.SubModules.WirelessTableCellsDetection.model_name": self._params[
"wireless_table_cells_detection_model_name"
],
"SubPipelines.TableRecognition.SubModules.WirelessTableCellsDetection.model_dir": self._params[
"wireless_table_cells_detection_model_dir"
],
"SubPipelines.TableRecognition.SubModules.TableOrientationClassify.model_name": self._params[
"table_orientation_classify_model_name"
],
"SubPipelines.TableRecognition.SubModules.TableOrientationClassify.model_dir": self._params[
"table_orientation_classify_model_dir"
],
"SubPipelines.TableRecognition.SubPipelines.GeneralOCR.SubModules.TextDetection.model_name": self._params[
"text_detection_model_name"
],
"SubPipelines.TableRecognition.SubPipelines.GeneralOCR.SubModules.TextDetection.model_dir": self._params[
"text_detection_model_dir"
],
"SubPipelines.TableRecognition.SubPipelines.GeneralOCR.SubModules.TextDetection.limit_side_len": self._params[
"text_det_limit_side_len"
],
"SubPipelines.TableRecognition.SubPipelines.GeneralOCR.SubModules.TextDetection.limit_type": self._params[
"text_det_limit_type"
],
"SubPipelines.TableRecognition.SubPipelines.GeneralOCR.SubModules.TextDetection.thresh": self._params[
"text_det_thresh"
],
"SubPipelines.TableRecognition.SubPipelines.GeneralOCR.SubModules.TextDetection.box_thresh": self._params[
"text_det_box_thresh"
],
"SubPipelines.TableRecognition.SubPipelines.GeneralOCR.SubModules.TextDetection.unclip_ratio": self._params[
"text_det_unclip_ratio"
],
"SubPipelines.TableRecognition.SubPipelines.GeneralOCR.SubModules.TextLineOrientation.model_name": self._params[
"textline_orientation_model_name"
],
"SubPipelines.TableRecognition.SubPipelines.GeneralOCR.SubModules.TextLineOrientation.model_dir": self._params[
"textline_orientation_model_dir"
],
"SubPipelines.TableRecognition.SubPipelines.GeneralOCR.SubModules.TextLineOrientation.batch_size": self._params[
"textline_orientation_batch_size"
],
"SubPipelines.TableRecognition.SubPipelines.GeneralOCR.SubModules.TextRecognition.model_name": self._params[
"text_recognition_model_name"
],
"SubPipelines.TableRecognition.SubPipelines.GeneralOCR.SubModules.TextRecognition.model_dir": self._params[
"text_recognition_model_dir"
],
"SubPipelines.TableRecognition.SubPipelines.GeneralOCR.SubModules.TextRecognition.batch_size": self._params[
"text_recognition_batch_size"
],
"SubPipelines.TableRecognition.SubPipelines.GeneralOCR.SubModules.TextRecognition.score_thresh": self._params[
"text_rec_score_thresh"
],
"SubPipelines.SealRecognition.SubPipelines.SealOCR.SubModules.TextDetection.model_name": self._params[
"seal_text_detection_model_name"
],
"SubPipelines.SealRecognition.SubPipelines.SealOCR.SubModules.TextDetection.model_dir": self._params[
"seal_text_detection_model_dir"
],
"SubPipelines.SealRecognition.SubPipelines.SealOCR.SubModules.TextDetection.limit_side_len": self._params[
"text_det_limit_side_len"
],
"SubPipelines.SealRecognition.SubPipelines.SealOCR.SubModules.TextDetection.limit_type": self._params[
"seal_det_limit_type"
],
"SubPipelines.SealRecognition.SubPipelines.SealOCR.SubModules.TextDetection.thresh": self._params[
"seal_det_thresh"
],
"SubPipelines.SealRecognition.SubPipelines.SealOCR.SubModules.TextDetection.box_thresh": self._params[
"seal_det_box_thresh"
],
"SubPipelines.SealRecognition.SubPipelines.SealOCR.SubModules.TextDetection.unclip_ratio": self._params[
"seal_det_unclip_ratio"
],
"SubPipelines.SealRecognition.SubPipelines.SealOCR.SubModules.TextRecognition.model_name": self._params[
"seal_text_recognition_model_name"
],
"SubPipelines.SealRecognition.SubPipelines.SealOCR.SubModules.TextRecognition.model_dir": self._params[
"seal_text_recognition_model_dir"
],
"SubPipelines.SealRecognition.SubPipelines.SealOCR.SubModules.TextRecognition.batch_size": self._params[
"seal_text_recognition_batch_size"
],
"SubPipelines.FormulaRecognition.SubModules.FormulaRecognition.model_name": self._params[
"formula_recognition_model_name"
],
"SubPipelines.FormulaRecognition.SubModules.FormulaRecognition.model_dir": self._params[
"formula_recognition_model_dir"
],
"SubPipelines.FormulaRecognition.SubModules.FormulaRecognition.batch_size": self._params[
"formula_recognition_batch_size"
],
}
return create_config_from_structure(STRUCTURE)
def _get_ocr_model_names(self, lang, ppocr_version):
LATIN_LANGS = [
"af",
"az",
"bs",
"cs",
"cy",
"da",
"de",
"es",
"et",
"fr",
"ga",
"hr",
"hu",
"id",
"is",
"it",
"ku",
"la",
"lt",
"lv",
"mi",
"ms",
"mt",
"nl",
"no",
"oc",
"pi",
"pl",
"pt",
"ro",
"rs_latin",
"sk",
"sl",
"sq",
"sv",
"sw",
"tl",
"tr",
"uz",
"vi",
"french",
"german",
]
ARABIC_LANGS = ["ar", "fa", "ug", "ur"]
ESLAV_LANGS = ["ru", "be", "uk"]
CYRILLIC_LANGS = [
"ru",
"rs_cyrillic",
"be",
"bg",
"uk",
"mn",
"abq",
"ady",
"kbd",
"ava",
"dar",
"inh",
"che",
"lbe",
"lez",
"tab",
]
DEVANAGARI_LANGS = [
"hi",
"mr",
"ne",
"bh",
"mai",
"ang",
"bho",
"mah",
"sck",
"new",
"gom",
"sa",
"bgc",
]
SPECIFIC_LANGS = [
"ch",
"en",
"korean",
"japan",
"chinese_cht",
"te",
"ka",
"ta",
]
if lang is None:
lang = "ch"
if ppocr_version is None:
if (
lang
in ["ch", "chinese_cht", "en", "japan", "korean", "th", "el"]
+ LATIN_LANGS
+ ESLAV_LANGS
):
ppocr_version = "PP-OCRv5"
elif lang in (
LATIN_LANGS
+ ARABIC_LANGS
+ CYRILLIC_LANGS
+ DEVANAGARI_LANGS
+ SPECIFIC_LANGS
):
ppocr_version = "PP-OCRv3"
else:
# Unknown language specified
return None, None
if ppocr_version == "PP-OCRv5":
rec_lang, rec_model_name = None, None
if lang in ("ch", "chinese_cht", "en", "japan"):
rec_model_name = "PP-OCRv5_server_rec"
elif lang in LATIN_LANGS:
rec_lang = "latin"
elif lang in ESLAV_LANGS:
rec_lang = "eslav"
elif lang == "korean":
rec_lang = "korean"
elif lang == "th":
rec_lang = "th"
elif lang == "el":
rec_lang = "el"
if rec_lang is not None:
rec_model_name = f"{rec_lang}_PP-OCRv5_mobile_rec"
return "PP-OCRv5_server_det", rec_model_name
elif ppocr_version == "PP-OCRv4":
if lang == "ch":
return "PP-OCRv4_mobile_det", "PP-OCRv4_mobile_rec"
elif lang == "en":
return "PP-OCRv4_mobile_det", "en_PP-OCRv4_mobile_rec"
else:
return None, None
else:
# PP-OCRv3
rec_lang = None
if lang in LATIN_LANGS:
rec_lang = "latin"
elif lang in ARABIC_LANGS:
rec_lang = "arabic"
elif lang in CYRILLIC_LANGS:
rec_lang = "cyrillic"
elif lang in DEVANAGARI_LANGS:
rec_lang = "devanagari"
else:
if lang in SPECIFIC_LANGS:
rec_lang = lang
rec_model_name = None
if rec_lang == "ch":
rec_model_name = "PP-OCRv3_mobile_rec"
elif rec_lang is not None:
rec_model_name = f"{rec_lang}_PP-OCRv3_mobile_rec"
return "PP-OCRv3_mobile_det", rec_model_name
class PPStructureV3CLISubcommandExecutor(PipelineCLISubcommandExecutor):
@property
def subparser_name(self):
return "pp_structurev3"
def _update_subparser(self, subparser):
add_simple_inference_args(subparser)
subparser.add_argument(
"--layout_detection_model_name",
type=str,
help="Name of the layout detection model.",
)
subparser.add_argument(
"--layout_detection_model_dir",
type=str,
help="Path to the layout detection model directory.",
)
subparser.add_argument(
"--layout_threshold",
type=float,
help="Score threshold for the layout detection model.",
)
subparser.add_argument(
"--layout_nms",
type=str2bool,
help="Whether to use NMS in layout detection.",
)
subparser.add_argument(
"--layout_unclip_ratio",
type=float,
help="Expansion coefficient for layout detection.",
)
subparser.add_argument(
"--layout_merge_bboxes_mode",
type=str,
help="Overlapping box filtering method.",
)
subparser.add_argument(
"--chart_recognition_model_name",
type=str,
help="Name of the chart recognition model.",
)
subparser.add_argument(
"--chart_recognition_model_dir",
type=str,
help="Path to the chart recognition model directory.",
)
subparser.add_argument(
"--chart_recognition_batch_size",
type=int,
help="Batch size for the chart recognition model.",
)
subparser.add_argument(
"--region_detection_model_name",
type=str,
help="Name of the region detection model.",
)
subparser.add_argument(
"--region_detection_model_dir",
type=str,
help="Path to the region detection model directory.",
)
subparser.add_argument(
"--doc_orientation_classify_model_name",
type=str,
help="Name of the document image orientation classification model.",
)
subparser.add_argument(
"--doc_orientation_classify_model_dir",
type=str,
help="Path to the document image orientation classification model directory.",
)
subparser.add_argument(
"--doc_unwarping_model_name",
type=str,
help="Name of the text image unwarping model.",
)
subparser.add_argument(
"--doc_unwarping_model_dir",
type=str,
help="Path to the image unwarping model directory.",
)
subparser.add_argument(
"--text_detection_model_name",
type=str,
help="Name of the text detection model.",
)
subparser.add_argument(
"--text_detection_model_dir",
type=str,
help="Path to the text detection model directory.",
)
subparser.add_argument(
"--text_det_limit_side_len",
type=int,
help="This sets a limit on the side length of the input image for the text detection model.",
)
subparser.add_argument(
"--text_det_limit_type",
type=str,
help="This determines how the side length limit is applied to the input image before feeding it into the text deteciton model.",
)
subparser.add_argument(
"--text_det_thresh",
type=float,
help="Detection pixel threshold for the text detection model. Pixels with scores greater than this threshold in the output probability map are considered text pixels.",
)
subparser.add_argument(
"--text_det_box_thresh",
type=float,
help="Detection box threshold for the text detection model. A detection result is considered a text region if the average score of all pixels within the border of the result is greater than this threshold.",
)
subparser.add_argument(
"--text_det_unclip_ratio",
type=float,
help="Text detection expansion coefficient, which expands the text region using this method. The larger the value, the larger the expansion area.",
)
subparser.add_argument(
"--textline_orientation_model_name",
type=str,
help="Name of the text line orientation classification model.",
)
subparser.add_argument(
"--textline_orientation_model_dir",
type=str,
help="Path to the text line orientation classification directory.",
)
subparser.add_argument(
"--textline_orientation_batch_size",
type=int,
help="Batch size for the text line orientation classification model.",
)
subparser.add_argument(
"--text_recognition_model_name",
type=str,
help="Name of the text recognition model.",
)
subparser.add_argument(
"--text_recognition_model_dir",
type=str,
help="Path to the text recognition model directory.",
)
subparser.add_argument(
"--text_recognition_batch_size",
type=int,
help="Batch size for the text recognition model.",
)
subparser.add_argument(
"--text_rec_score_thresh",
type=float,
help="Text recognition threshold used in general OCR. Text results with scores greater than this threshold are retained.",
)
subparser.add_argument(
"--table_classification_model_name",
type=str,
help="Name of the table classification model.",
)
subparser.add_argument(
"--table_classification_model_dir",
type=str,
help="Path to the table classification model directory.",
)
subparser.add_argument(
"--wired_table_structure_recognition_model_name",
type=str,
help="Name of the wired table structure recognition model.",
)
subparser.add_argument(
"--wired_table_structure_recognition_model_dir",
type=str,
help="Path to the wired table structure recognition model directory.",
)
subparser.add_argument(
"--wireless_table_structure_recognition_model_name",
type=str,
help="Name of the wireless table structure recognition model.",
)
subparser.add_argument(
"--wireless_table_structure_recognition_model_dir",
type=str,
help="Path to the wired table structure recognition model directory.",
)
subparser.add_argument(
"--wired_table_cells_detection_model_name",
type=str,
help="Name of the wired table cells detection model.",
)
subparser.add_argument(
"--wired_table_cells_detection_model_dir",
type=str,
help="Path to the wired table cells detection model directory.",
)
subparser.add_argument(
"--wireless_table_cells_detection_model_name",
type=str,
help="Name of the wireless table cells detection model.",
)
subparser.add_argument(
"--wireless_table_cells_detection_model_dir",
type=str,
help="Path to the wireless table cells detection model directory.",
)
subparser.add_argument(
"--seal_text_detection_model_name",
type=str,
help="Name of the seal text detection model.",
)
subparser.add_argument(
"--seal_text_detection_model_dir",
type=str,
help="Path to the seal text detection model directory.",
)
subparser.add_argument(
"--seal_det_limit_side_len",
type=int,
help="This sets a limit on the side length of the input image for the seal text detection model.",
)
subparser.add_argument(
"--seal_det_limit_type",
type=str,
help="This determines how the side length limit is applied to the input image before feeding it into the seal text deteciton model.",
)
subparser.add_argument(
"--seal_det_thresh",
type=float,
help="Detection pixel threshold for the seal text detection model. Pixels with scores greater than this threshold in the output probability map are considered text pixels.",
)
subparser.add_argument(
"--seal_det_box_thresh",
type=float,
help="Detection box threshold for the seal text detection model. A detection result is considered a text region if the average score of all pixels within the border of the result is greater than this threshold.",
)
subparser.add_argument(
"--seal_det_unclip_ratio",
type=float,
help="Seal text detection expansion coefficient, which expands the text region using this method. The larger the value, the larger the expansion area.",
)
subparser.add_argument(
"--seal_text_recognition_model_name",
type=str,
help="Name of the seal text recognition model.",
)
subparser.add_argument(
"--seal_text_recognition_model_dir",
type=str,
help="Path to the seal text recognition model directory.",
)
subparser.add_argument(
"--seal_text_recognition_batch_size",
type=int,
help="Batch size for the seal text recognition model.",
)
subparser.add_argument(
"--seal_rec_score_thresh",
type=float,
help="Seal text recognition threshold. Text results with scores greater than this threshold are retained.",
)
subparser.add_argument(
"--formula_recognition_model_name",
type=str,
help="Name of the formula recognition model.",
)
subparser.add_argument(
"--formula_recognition_model_dir",
type=str,
help="Path to the formula recognition model directory.",
)
subparser.add_argument(
"--formula_recognition_batch_size",
type=int,
help="Batch size for the formula recognition model.",
)
subparser.add_argument(
"--use_doc_orientation_classify",
type=str2bool,
help="Whether to use document image orientation classification.",
)
subparser.add_argument(
"--use_doc_unwarping",
type=str2bool,
help="Whether to use text image unwarping.",
)
subparser.add_argument(
"--use_textline_orientation",
type=str2bool,
help="Whether to use text line orientation classification.",
)
subparser.add_argument(
"--use_seal_recognition",
type=str2bool,
help="Whether to use seal recognition.",
)
subparser.add_argument(
"--use_table_recognition",
type=str2bool,
help="Whether to use table recognition.",
)
subparser.add_argument(
"--use_formula_recognition",
type=str2bool,
help="Whether to use formula recognition.",
)
subparser.add_argument(
"--use_chart_recognition",
type=str2bool,
help="Whether to use chart recognition.",
)
subparser.add_argument(
"--use_region_detection",
type=str2bool,
help="Whether to use region detection.",
)
def execute_with_args(self, args):
params = get_subcommand_args(args)
perform_simple_inference(
PPStructureV3,
params,
)