# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .._utils.cli import (
add_simple_inference_args,
get_subcommand_args,
perform_simple_inference,
str2bool,
)
from .base import PaddleXPipelineWrapper, PipelineCLISubcommandExecutor
from .utils import create_config_from_structure
_SUPPORTED_VL_BACKENDS = ["native", "vllm-server", "sglang-server", "fastdeploy-server"]
class PaddleOCRVL(PaddleXPipelineWrapper):
def __init__(
self,
layout_detection_model_name=None,
layout_detection_model_dir=None,
layout_threshold=None,
layout_nms=None,
layout_unclip_ratio=None,
layout_merge_bboxes_mode=None,
vl_rec_model_name=None,
vl_rec_model_dir=None,
vl_rec_backend=None,
vl_rec_server_url=None,
vl_rec_max_concurrency=None,
vl_rec_api_key=None,
doc_orientation_classify_model_name=None,
doc_orientation_classify_model_dir=None,
doc_unwarping_model_name=None,
doc_unwarping_model_dir=None,
use_doc_orientation_classify=None,
use_doc_unwarping=None,
use_layout_detection=None,
use_chart_recognition=None,
format_block_content=None,
**kwargs,
):
if vl_rec_backend is not None and vl_rec_backend not in _SUPPORTED_VL_BACKENDS:
raise ValueError(
f"Invalid backend for the VL recognition module: {vl_rec_backend}. Supported values are {_SUPPORTED_VL_BACKENDS}."
)
params = locals().copy()
params.pop("self")
params.pop("kwargs")
self._params = params
super().__init__(**kwargs)
@property
def _paddlex_pipeline_name(self):
return "PaddleOCR-VL"
def predict_iter(
self,
input,
*,
use_doc_orientation_classify=None,
use_doc_unwarping=None,
use_layout_detection=None,
use_chart_recognition=None,
layout_threshold=None,
layout_nms=None,
layout_unclip_ratio=None,
layout_merge_bboxes_mode=None,
use_queues=None,
prompt_label=None,
format_block_content=None,
repetition_penalty=None,
temperature=None,
top_p=None,
min_pixels=None,
max_pixels=None,
**kwargs,
):
return self.paddlex_pipeline.predict(
input,
use_doc_orientation_classify=use_doc_orientation_classify,
use_doc_unwarping=use_doc_unwarping,
use_layout_detection=use_layout_detection,
use_chart_recognition=use_chart_recognition,
layout_threshold=layout_threshold,
layout_nms=layout_nms,
layout_unclip_ratio=layout_unclip_ratio,
layout_merge_bboxes_mode=layout_merge_bboxes_mode,
use_queues=use_queues,
prompt_label=prompt_label,
format_block_content=format_block_content,
repetition_penalty=repetition_penalty,
temperature=temperature,
top_p=top_p,
min_pixels=min_pixels,
max_pixels=max_pixels,
**kwargs,
)
def predict(
self,
input,
*,
use_doc_orientation_classify=None,
use_doc_unwarping=None,
use_layout_detection=None,
use_chart_recognition=None,
layout_threshold=None,
layout_nms=None,
layout_unclip_ratio=None,
layout_merge_bboxes_mode=None,
use_queues=None,
prompt_label=None,
format_block_content=None,
repetition_penalty=None,
temperature=None,
top_p=None,
min_pixels=None,
max_pixels=None,
**kwargs,
):
return list(
self.predict_iter(
input,
use_doc_orientation_classify=use_doc_orientation_classify,
use_doc_unwarping=use_doc_unwarping,
use_layout_detection=use_layout_detection,
use_chart_recognition=use_chart_recognition,
layout_threshold=layout_threshold,
layout_nms=layout_nms,
layout_unclip_ratio=layout_unclip_ratio,
layout_merge_bboxes_mode=layout_merge_bboxes_mode,
use_queues=use_queues,
prompt_label=prompt_label,
format_block_content=format_block_content,
repetition_penalty=repetition_penalty,
temperature=temperature,
top_p=top_p,
min_pixels=min_pixels,
max_pixels=max_pixels,
**kwargs,
)
)
def concatenate_markdown_pages(self, markdown_list):
return self.paddlex_pipeline.concatenate_markdown_pages(markdown_list)
@classmethod
def get_cli_subcommand_executor(cls):
return PaddleOCRVLCLISubcommandExecutor()
def _get_paddlex_config_overrides(self):
STRUCTURE = {
"SubPipelines.DocPreprocessor.use_doc_orientation_classify": self._params[
"use_doc_orientation_classify"
],
"SubPipelines.DocPreprocessor.use_doc_unwarping": self._params[
"use_doc_unwarping"
],
"use_doc_preprocessor": self._params["use_doc_orientation_classify"]
or self._params["use_doc_unwarping"],
"use_layout_detection": self._params["use_layout_detection"],
"use_chart_recognition": self._params["use_chart_recognition"],
"format_block_content": self._params["format_block_content"],
"SubModules.LayoutDetection.model_name": self._params[
"layout_detection_model_name"
],
"SubModules.LayoutDetection.model_dir": self._params[
"layout_detection_model_dir"
],
"SubModules.LayoutDetection.threshold": self._params["layout_threshold"],
"SubModules.LayoutDetection.layout_nms": self._params["layout_nms"],
"SubModules.LayoutDetection.layout_unclip_ratio": self._params[
"layout_unclip_ratio"
],
"SubModules.LayoutDetection.layout_merge_bboxes_mode": self._params[
"layout_merge_bboxes_mode"
],
"SubModules.VLRecognition.model_name": self._params["vl_rec_model_name"],
"SubModules.VLRecognition.model_dir": self._params["vl_rec_model_dir"],
"SubModules.VLRecognition.genai_config.backend": self._params[
"vl_rec_backend"
],
"SubModules.VLRecognition.genai_config.server_url": self._params[
"vl_rec_server_url"
],
"SubModules.VLRecognition.genai_config.max_concurrency": self._params[
"vl_rec_max_concurrency"
],
"SubModules.VLRecognition.genai_config.client_kwargs.api_key": self._params[
"vl_rec_api_key"
],
"SubPipelines.DocPreprocessor.SubModules.DocOrientationClassify.model_name": self._params[
"doc_orientation_classify_model_name"
],
"SubPipelines.DocPreprocessor.SubModules.DocOrientationClassify.model_dir": self._params[
"doc_orientation_classify_model_dir"
],
"SubPipelines.DocPreprocessor.SubModules.DocUnwarping.model_name": self._params[
"doc_unwarping_model_name"
],
"SubPipelines.DocPreprocessor.SubModules.DocUnwarping.model_dir": self._params[
"doc_unwarping_model_dir"
],
}
return create_config_from_structure(STRUCTURE)
class PaddleOCRVLCLISubcommandExecutor(PipelineCLISubcommandExecutor):
@property
def subparser_name(self):
return "doc_parser"
def _update_subparser(self, subparser):
add_simple_inference_args(subparser)
subparser.add_argument(
"--layout_detection_model_name",
type=str,
help="Name of the layout detection model.",
)
subparser.add_argument(
"--layout_detection_model_dir",
type=str,
help="Path to the layout detection model directory.",
)
subparser.add_argument(
"--layout_threshold",
type=float,
help="Score threshold for the layout detection model.",
)
subparser.add_argument(
"--layout_nms",
type=str2bool,
help="Whether to use NMS in layout detection.",
)
subparser.add_argument(
"--layout_unclip_ratio",
type=float,
help="Expansion coefficient for layout detection.",
)
subparser.add_argument(
"--layout_merge_bboxes_mode",
type=str,
help="Overlapping box filtering method.",
)
subparser.add_argument(
"--vl_rec_model_name",
type=str,
help="Name of the VL recognition model.",
)
subparser.add_argument(
"--vl_rec_model_dir",
type=str,
help="Path to the VL recognition model directory.",
)
subparser.add_argument(
"--vl_rec_backend",
type=str,
help="Backend used by the VL recognition module.",
choices=_SUPPORTED_VL_BACKENDS,
)
subparser.add_argument(
"--vl_rec_server_url",
type=str,
help="Server URL used by the VL recognition module.",
)
subparser.add_argument(
"--vl_rec_max_concurrency",
type=str,
help="Maximum concurrency for making VLM requests.",
)
subparser.add_argument(
"--vl_rec_api_key",
type=str,
help="API key for the VLM server.",
)
subparser.add_argument(
"--doc_orientation_classify_model_name",
type=str,
help="Name of the document image orientation classification model.",
)
subparser.add_argument(
"--doc_orientation_classify_model_dir",
type=str,
help="Path to the document image orientation classification model directory.",
)
subparser.add_argument(
"--doc_unwarping_model_name",
type=str,
help="Name of the text image unwarping model.",
)
subparser.add_argument(
"--doc_unwarping_model_dir",
type=str,
help="Path to the image unwarping model directory.",
)
subparser.add_argument(
"--use_doc_orientation_classify",
type=str2bool,
help="Whether to use document image orientation classification.",
)
subparser.add_argument(
"--use_doc_unwarping",
type=str2bool,
help="Whether to use text image unwarping.",
)
subparser.add_argument(
"--use_layout_detection",
type=str2bool,
help="Whether to use layout detection.",
)
subparser.add_argument(
"--use_chart_recognition",
type=str2bool,
help="Whether to use chart recognition.",
)
subparser.add_argument(
"--format_block_content",
type=str2bool,
help="Whether to format block content to Markdown.",
)
subparser.add_argument(
"--use_queues",
type=str2bool,
help="Whether to use queues for asynchronous processing.",
)
subparser.add_argument(
"--prompt_label",
type=str,
help="Prompt label for the VLM.",
)
subparser.add_argument(
"--repetition_penalty",
type=float,
help="Repetition penalty used in sampling for the VLM.",
)
subparser.add_argument(
"--temperature",
type=float,
help="Temperature parameter used in sampling for the VLM.",
)
subparser.add_argument(
"--top_p",
type=float,
help="Top-p parameter used in sampling for the VLM.",
)
subparser.add_argument(
"--min_pixels",
type=int,
help="Minimum pixels for image preprocessing for the VLM.",
)
subparser.add_argument(
"--max_pixels",
type=int,
help="Maximum pixels for image preprocessing for the VLM.",
)
def execute_with_args(self, args):
params = get_subcommand_args(args)
perform_simple_inference(
PaddleOCRVL,
params,
predict_param_names={
"use_queues",
"prompt_label",
"repetition_penalty",
"temperature",
"top_p",
"min_pixels",
"max_pixels",
},
)